Publications by authors named "Silvia J Canas-Duarte"

Bacteria often experience nutrient limitation in nature and the laboratory. While exponential and stationary growth phases are well characterized in the model bacterium , little is known about what transpires inside individual cells during the transition between these two phases. Through quantitative cell imaging, we found that the position of nucleoids and cell division sites becomes increasingly asymmetric during transition phase.

View Article and Find Full Text PDF

As bacteria transition from exponential to stationary phase, they change substantially in size, morphology, growth and expression profiles. These responses also vary between individual cells, but it has proved difficult to track cell lineages along the growth curve to determine the progression of events or correlations between how individual cells enter and exit dormancy. Here, we developed a platform for tracking more than 10 parallel cell lineages in dense and changing cultures, independently validating that the imaged cells closely track batch populations.

View Article and Find Full Text PDF

Persisters represent a small subpopulation of non- or slow-growing bacterial cells that are tolerant to killing by antibiotics. Despite their prominent role in the recalcitrance of chronic infections to antibiotic therapy, the mechanism of their formation has remained elusive. We show that sorted cells of Escherichia coli with low levels of energy-generating enzymes are better able to survive antibiotic killing.

View Article and Find Full Text PDF

The SAR group (Stramenopila, Alveolata, Rhizaria) is one of the largest clades in the tree of eukaryotes and includes a great number of parasitic lineages. Rhizarian parasites are obligate and have devastating effects on commercially important plants and animals but despite this fact, our knowledge of their biology and evolution is limited. Here, we present rhizarian transcriptomes from all major parasitic lineages in order to elucidate their evolutionary relationships using a phylogenomic approach.

View Article and Find Full Text PDF

Bacterial persistence, where a fraction of a population presents a transient resistance to bactericidal substances, has great medical importance due to its relation with the appearance of antibiotic resistances and untreatable bacterial chronic infections. The mechanisms behind this phenomenon remain largely unknown in spite of recent advances, in great part because of the difficulty in isolating the very small fraction of the population that is in this state at any given time. Current protocols for persister isolation have resulted in possible biases because of the induction of this state by the protocol itself.

View Article and Find Full Text PDF