Publications by authors named "Silvia H De Paoli Lacerda"

Understanding the optical properties of clustered quantum dots (QDs) is essential to the design of QD-based optical phantoms for molecular imaging. Single and clustered core/shell colloidal QDs of dimers, trimers, and tetramers are self-assembled, separated, and preferentially collected using electrospray differential mobility analysis (ES-DMA) with electrostatic deposition. Multimodal optical characterization and analysis of their dynamical photoluminescence (PL) properties enables the long-term evaluation of the physicochemical and optical properties of QDs in a single or a clustered state.

View Article and Find Full Text PDF

Blood platelets are essential in maintaining hemostasis. Various materials can activate platelets and cause them to aggregate. Platelet aggregation in vitro is often used as a marker for materials' thrombogenic properties, and studying nanomaterial interaction with platelets is an important step toward understanding their hematocompatibility.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are known to potentiate arterial thrombosis in animal models, which raises serious safety issues concerning environmental or occupational exposure to CNTs and their use in various biomedical applications. We have shown previously that different CNTs, but not fullerene (nC60), induce the aggregation of human blood platelets. To date, however, a mechanism of potentially thrombogenic CNT-induced platelet activation has not been elucidated.

View Article and Find Full Text PDF

We present a microfluidic method to direct the self-assembly of temperature-sensitive liposome-hydrogel hybrid nanoparticles. Our approach yields nanoparticles with structural properties and highly monodisperse size distributions precisely controlled across a broad range relevant to the targeted delivery and controlled release of encapsulated therapeutic agents. We used microfluidic hydrodynamic focusing to control the convective-diffusive mixing of two miscible nanoparticle precursor solutions (a DPPC:cholesterol:DCP phospholipid formulation in isopropanol and a photopolymerizable N-isopropylacrylamide mixture in aqueous buffer) to form nanoscale lipid vesicles with encapsulated hydrogel precursors.

View Article and Find Full Text PDF

The kinetics of nanoparticle (NP) adsorption on a model biological interface (collagen) is measured in microfluidic channels using surface plasmon resonance (SPR) imaging over a range of CdSe/ZnS quantum dot concentrations to investigate the underlying binding process. Spherical CdSe/ZnS core-shell NP, derivatized with 3-mercaptopropionic acid (3-MPA), were considered to be model NPs because of their widespread use in biological applications and their relatively monodisperse size. The kinetic adsorption data suggests that the binding between the NP and the collagen substrate is irreversible at room temperature (pH approximately 7.

View Article and Find Full Text PDF

In order to better understand the physical basis of the biological activity of nanoparticles (NPs) in nanomedicine applications and under conditions of environmental exposure, we performed an array of photophysical measurements to quantify the interaction of model gold NPs having a wide range of NP diameters with common blood proteins. In particular, absorbance, fluorescence quenching, circular dichroism, dynamic light scattering, and electron microscopy measurements were performed on surface-functionalized water-soluble gold NPs having a diameter range from 5 to 100 nm in the presence of common human blood proteins: albumin, fibrinogen, gamma-globulin, histone, and insulin. We find that the gold NPs strongly associate with these essential blood proteins where the binding constant, K, as well as the degree of cooperativity of particle--protein binding (Hill constant, n), depends on particle size and the native protein structure.

View Article and Find Full Text PDF

To elucidate a mechanism of prothrombotic effects of carbon nanotubes (CNTs), we report here that multiwalled CNTs activate blood platelets by inducing extracellular Ca(2+) influx that could be inhibited by calcium channel blockers SKF 96365 and 2-APB. We also demonstrate platelet aggregating activity of different single-walled and multiwalled CNTs. In addition, we show that CNT-induced platelet activation is associated with a marked release of platelet membrane microparticles positive for the granular secretion markers CD62P and CD63.

View Article and Find Full Text PDF

We characterize CdSe/ZnS quantum dot (QD) binding to genetically modified bacteriophage as a model for bacterial detection. Interactions among QDs, lambda (lambda) phage, and Escherichia coli are examined by several cross-validated methods. Flow and image-based cytometry clarify fluorescent labeling of bacteria, with image-based cytometry additionally reporting the number of decorated phage bound to cells.

View Article and Find Full Text PDF

It is well-known that thin films of cylinder-forming block copolymers (BCP) can exhibit a transition from a perpendicular to a parallel cylinder orientation with respect to the supporting solid substrate upon varying film thickness. We show that wave-like oscillations between these morphologies can be induced through the introduction of nanoparticles (NP) into flow-coated and annealed BCP films where the particles span the film thickness and are fixed by irreversible adsorption to the supporting substrate. We hypothesize that these novel "target" patterns arise from residual stresses that build up in the film while undergoing thermal treatment and film formation, and we support this hypothesis by showing the suppression of this type of pattern formation in films that are first thermally annealed near their glass transition T(g) to relax residual stress.

View Article and Find Full Text PDF

We investigate the utility of Langmuir adsorption measurements for characterizing nanoparticle-substrate interactions. Spherical CdSe/ZnS core-shell nanoparticles were chosen as representative particles because of their widespread use in biological labeling measurements and their relatively monodisperse dimensions. In particular, the quantum dots were functionalized with 11-mercaptoundecanoic acid, and we utilized an amine-terminated self-assembled monolayer (SAM) as a model substrate.

View Article and Find Full Text PDF

Water soluble CdSe/ZnS nanoparticles with emission maxima from 511 nm to 596 nm and quantum efficiencies ranging from 11% to 28% are synthesized in a facile two-step method in ambient atmospheric conditions using a commercially available microwave reactor.

View Article and Find Full Text PDF

Nanosized gel particles (nanogels) are of interest for a variety of applications, including drug delivery and single-molecule encapsulation. Here, we employ the cores of nanoscale liposomes as reaction vessels to template the assembly of calcium alginate nanogels. For our experiments, a liposome formulation with a high bilayer melting temperature (Tm) is selected, and sodium alginate is encapsulated in the liposomal core.

View Article and Find Full Text PDF

We exploit the polytypism of group II-VI semiconductors and the long-range dipolar interactions typical of CdSe nanoparticle formation to modulate the geometrical structure and the optical emission properties of novel branched CdSe nanocrystals through shape-dependent quantum confinement effects. X-ray diffraction confirms that these materials incorporate crystalline domains of cubic zinc-blende and hexagonal wurtzite within a polycrystalline growth form whose geometry can be controlled by varying thermodynamic conditions. In particular, labyrinthine-shaped nanoparticles of tunable dimensions are reproducibly synthesized based on a heterogeneous reaction between cadmium acetate in a solution in hexadecylamine and trioctylphosphine with Se as a solid precursor at a relatively low temperature (110 degrees C).

View Article and Find Full Text PDF

Among the novel chemical and physical attributes of single-wall carbon nanotubes (SWCNTs), the optical properties are perhaps the most compelling. Although much is known about how such characteristics depend on nanotube chirality and diameter, relatively little is known about how the optical response depends on length, the next most obvious and fundamental nanotube trait. We show here that the intrinsic optical response of single-wall carbon nanotubes exhibits a strong dependence on nanotube length, and we offer a simple explanation that relates this behavior to the localization of a bound exciton along the length of a nanotube.

View Article and Find Full Text PDF

The paper describes the effect of an oscillating magnetic field (OMF) on the morphology and release properties of collagen gels containing magnetic nanoparticles and microparticles and fluorescent drug analogues. Collagen gels were prepared through fibrillogenesis of collagen in the presence of iron oxide magnetic particles averaging 10 nm or 3 mum in diameter and rhodamine-labeled dextran (Dex-R) of molecular weights between 3000-70 000 g/mol. Dextran molecules effectively simulate protein-based drugs, since they have similar molecular weights and dimensions.

View Article and Find Full Text PDF

The paper examines the release properties of collagen gels that contain covalently bound fluorescent drug analogs. Collagen gels were prepared by fibrilogenesis. The gels were stabilized by cross linking with EDAC/NHS.

View Article and Find Full Text PDF

Near-infrared (NIR) spectrometry was successfully used for the non-invasive and in situ determination of concentrations and structure of water absorbed by room-temperature ionic liquids (RTILs). It was found that RTILs based on 1-butyl-3-methylimidazolium, namely, [BuMIm]+ [BF4]-, [BuMIm]+ [bis((trifluoromethyl)sulfonyl)amide, or Tf2N]- and [BuMIm]+ [PF6]-, are hydroscopic and can quickly absorb water when they are exposed to air. Absorbed water interacts with the anions of the RTILs, and these interactions lead to changes in the structure of water.

View Article and Find Full Text PDF

Near-infrared spectrometry has been successfully used to determine association binding constants between phenol and alpha-, beta- and gamma-cyclodextrin (CD) in [butylmethylimidazolium][chloride] room-temperature ionic liquid (RTIL). It was found that adding CD into the RTIL solution of phenol resulted in an enhancement in the absorption coefficient of the stretching overtone of the aromatic C-H groups. However, the enhancement induced by CDs in RTIL is much lower (order of magnitude) than those corresponding in D20.

View Article and Find Full Text PDF