Agmatine (AGM) produces a dual effect on the mitochondrial permeability transition (MPT) mechanism in rat liver mitochondria: at low concentrations, it induces the phenomenon, at high ones, inhibits it. The prevention at high concentrations is evidenced by the significant inhibition of mitochondrial swelling induced by Ca and phosphate; in this condition, AGM both prevents the release of Apoptosis Inducing Factor (AIF) and enhances the release of other pro-apoptotic factors, such as cytochrome c (cyt c) and Smac/DIABLO. As these factors are released without MPT induction, the involvement of mitochondrial outer membrane permeabilization (MOMP) could be hypothesized.
View Article and Find Full Text PDFAged garlic extract (AGE) has been shown to possess therapeutic properties in cancer; however its mechanisms of action are unclear. In this study, we demonstrate by MTT assay that AGE exerts an anti-proliferative effect on a panel of both sensitive and multidrug-resistant (MDR) human cancer cell lines and enhances the effects of hyperthermia (42˚C) on M14 melanoma cells. The evaluation of the mitochondrial activity in whole cancer cells treated with AGE, performed by cytofluorimetric analysis in the presence of the lipophilic cationic fluorochrome JC-1, revealed the occurrence of dose-dependent mitochondrial membrane depolarization.
View Article and Find Full Text PDFMitochondria represent cell "powerhouses," being involved in energy transduction from the electrochemical gradient to ATP synthesis. The morphology of their cell types may change, according to various metabolic processes or osmotic pressure. A new morphology of the inner membrane and mitochondrial cristae, significantly different from the previous one, has been proposed for the inner membrane and mitochondrial cristae, based on the technique of electron tomography.
View Article and Find Full Text PDFSpermine, besides to be transported in mitochondria by an energy dependent electrophoretic mechanism, can be also released by two different mechanisms. The first one is induced in deenergizing conditions by FCCP or antimycin A and it is mediated by an electroneutral exchange spermine protons. The second one takes place in energizing conditions during the activity of the adenine nucleotide translocase and is mediated by an electroneutral symport mechanism involving the efflux in co-transport of spermine and phosphate and the exchange of exogenous ADP with endogenous ATP.
View Article and Find Full Text PDFMitochondria, once merely considered as the "powerhouse" of cells, as they generate more than 90 % of cellular ATP, are now known to play a central role in many metabolic processes, including oxidative stress and apoptosis. More than 40 known human diseases are the result of excessive production of reactive oxygen species (ROS), bioenergetic collapse and dysregulated apoptosis. Mitochondria are the main source of ROS in cells, due to the activity of the respiratory chain.
View Article and Find Full Text PDFThe uptake of spermine into mammalian mitochondria indicated the need to identify its catabolic pathway in these organelles. Bovine liver mitochondria were therefore purified and their capacity for natural polyamine uptake was verified. A kinetic approach was then used to determine the presence of an MDL 72527-sensitive enzyme with spermine oxidase activity in the matrix of bovine liver mitochondria.
View Article and Find Full Text PDFA convenient synthetic route and the characterization of complexes trans-[PtCl2(L)(PPh3)] (L=Et2NH (2), (PhCH2)2NH (3), (HOCH2CH2)2NH) (4) are reported. The antiproliferative activity was evaluated on three human tumor cell lines. The investigation on the mechanism of action highlighted for the most active complex 4 the capacity to affect mitochondrial functions.
View Article and Find Full Text PDFThe polyamine spermine is transported into the mitochondrial matrix by an electrophoretic mechanism having as driving force the negative electrical membrane potential (ΔΨ). The presence of phosphate increases spermine uptake by reducing ΔpH and enhancing ΔΨ. The transport system is a specific uniporter constituted by a protein channel exhibiting two asymmetric energy barriers with the spermine binding site located in the energy well between the two barriers.
View Article and Find Full Text PDFMitochondria are the cell powerhouses but also contain the mechanisms leading to cell death. Many signals converge on mitochondria to cause the permeabilization of mitochondrial membranes by the mitochondrial permeability transition (MPT) induction and the opening of transition pores (PTPs). These events cause loss of ionic homeostasis, matrix swelling, outer membrane rupture leading to pro-apoptotic factors release, and impairment of bioenergetics functions.
View Article and Find Full Text PDF4β-cinnamoyloxy,1β,3α-dihydroxyeudesm-7,8-ene (CDE) extracted from Verbesina persicifolia induces bioenergetic collapse in rat liver mitochondria (RLM), monitored as a fall in the respiratory control index and ADP/O values. This fall in energy is accompanied by a protonophore effect and membrane potential (Δψ) collapse, demonstrating that CDE behaves as a typical uncoupling agent. However, when examining the effect of CDE in detail, we found that it acts as a "mild" uncoupler because it drops Δψ and increases respiratory state 4.
View Article and Find Full Text PDFThe polyamine spermine is transported into the matrix of various types of mitochondria by a specific uniporter system identified as a protein channel. This mechanism is regulated by the membrane potential; other regulatory effectors are unknown. This study analyzes the transport of spermine in the presence of peroxides in both isolated rat liver and brain mitochondria, in order to evaluate the involvement of the redox state in this mechanism, and to compare its effect in both types of mitochondria.
View Article and Find Full Text PDFMitochondrial permeability transition (MPT) is correlated with the opening of a nonspecific pore, the so-called transition pore, that triggers bidirectional traffic of inorganic solutes and metabolites across the mitochondrial membrane. This phenomenon is caused by supraphysiological Ca(2+) concentrations and by other compounds leading to oxidative stress, while cyclosporin A, ADP, bongkrekic acid, antioxidant agents and naturally occurring polyamines strongly inhibit it. The effects of polyamines, including the diamine agmatine, have been widely studied in several types of mitochondria.
View Article and Find Full Text PDFAgmatine, a divalent diamine with two positive charges at physiological pH, is transported into the matrix of liver mitochondria by an energy-dependent mechanism, the driving force of which is the electrical membrane potential. Its binding to mitochondrial membranes is studied by applying a thermodynamic treatment of ligand-receptor interactions on the analyses of Scatchard and Hill. The presence of two mono-coordinated binding sites S(1) and S(2), with a negative influence of S(2) on S(1), has been demonstrated.
View Article and Find Full Text PDF