Currently, one of the most promising treatments of lipopolysaccharides (LPS)-induced sepsis is based on hemofiltration. Nevertheless, proteins rapidly adsorbed on the artificial surface of membranes which leads to activation of coagulation impairing effective scavenging of the endotoxins. To overcome this challenge, we designed polymer-brush-coated microparticles displaying antifouling properties and functionalized them with polymyxin B (PMB) to specifically scavenge LPS the most common endotoxin.
View Article and Find Full Text PDFThe most fundamental aspects of single-electron transfer (SET) principles are presented. They are discussed according to different definitions used by expert practitioners and are applied to SET living radical polymerization (SET-LRP) according to the definition of the division of organic chemistry of IUPAC that relies on principles elaborated by Taube, Eberson, Chanon, and Kochi. Additional definitions are also discussed to help clarify for the nonexpert contradictory literature reports.
View Article and Find Full Text PDFTo continue expanding the use of Single Electron Transfer-Living Radical Polymerization (SET-LRP) in applications at the interface between macromolecular science, biomacromolecules, biology and medicine, it is essential to develop novel initiators that do not compromise the structural stability of synthesized polymers in biological environments. Here, we report that stable 2-bromopropionyl peptoid-type initiators such as 1,4-bis(2-bromopropionyl)piperazine and 4-(2-bromopropionyl)morpholine are an alternative that meets the standards reached by the well-known secondary and tertiary α-haloester-type initiators in terms of excellent control over molecular weight evolution and distribution as well as polymer chain ends. SET-LRP methodologies in organic, aqueous, and biphasic organic-aqueous media were evaluated for this purpose.
View Article and Find Full Text PDFSingle electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP).
View Article and Find Full Text PDF2,2-Bis(azidomethyl)propionic acid was prepared in four steps and 85% yield from the commercially available 2,2-bis(hydroxymethyl)propionic acid and used as the starting building block for the divergent, convergent, and double-stage convergent-divergent iterative methods for the synthesis of dendrimers and dendrons containing ethylenediamine (EDA), piperazine (PPZ), and methyl 2,2-bis(aminomethyl)propionate (COOMe) cores. These cores have the same multiplicity but different conformations. A diversity of synthetic methods were used for the synthesis of dendrimers and dendrons.
View Article and Find Full Text PDFImmobilization of polysaccharides (yeast mannan and gum arabic) on the macroporous poly(glycidyl methacrylate) monodisperse microspheres coated with silica (SiO2 )-containing amino groups on the surface was used to prepare affinity sorbents for lectin purification. The efficiency of isolating mannose specific Pisum sativum lectin was demonstrated on sorbent with immobilized yeast mannan and that of galactose specific Glycine hispida lectin on sorbent with immobilized gum arabic. The microspheres with immobilized polysaccharides can be used for selecting an affinity sorbent for purification of other mannose- and galactose-specific lectins.
View Article and Find Full Text PDF