Publications by authors named "Silvia Gonzali"

Over the past decade, progress has been made in the characterization of anthocyanin synthesis in fruits of plants belonging to the tomato clade. The genomic elements underlying the activation of the process were identified, providing the basis for understanding how the pathway works in these species. In this review we explore the genetic mechanisms that have been characterized to date, and detail the various wild relatives of the tomato, which have been crucial for recovering ancestral traits that were probably lost during evolution from green-purple to yellow and red tomatoes.

View Article and Find Full Text PDF

Background: A high content in anthocyanins, for their health beneficial properties, represents an added value for fruits and vegetables. Tomato (Solanum lycopersicum) is one of the most consumed vegetables worldwide and is rich in vitamins and carotenoids. In recent years, purple-skinned tomatoes, enriched of anthocyanins, were produced recovering allelic variants from wild Solanum species.

View Article and Find Full Text PDF

Iodine is an essential micronutrient for humans, but its role in plant physiology was debated for nearly a century. Recently its functional involvement in plant nutrition and stress-protection collected the first experimental evidence. This study wanted to examine in depth the involvement of iodine in tomato plant nutrition, also evaluating its potential on salt stress tolerance.

View Article and Find Full Text PDF

Iodine deficiency represents a public health problem worldwide. To increase the amount of iodine in the diet, biofortification strategies of plants have been tried. They rely on the exogenous administration of iodine to increase its absorption and accumulation.

View Article and Find Full Text PDF

Little is known about the role of iodine in plant physiology. We evaluated the impact of low concentrations of iodine on the phenotype, transcriptome and proteome of . Our experiments showed that removal of iodine from the nutrition solution compromises plant growth, and restoring it in micromolar concentrations is beneficial for biomass accumulation and leads to early flowering.

View Article and Find Full Text PDF

Anthocyanins are plant secondary metabolites belonging to the class of polyphenols, whose beneficial roles in the prevention and treatment of several important human diseases have been demonstrated in many epidemiological studies. Their intake through diet strictly depends on the eating habits, as anthocyanins are contained in red and purple fruit and vegetables as well as in some processed foods and beverages, such as red wine. Genetic engineering and breeding programs have been recently carried out to increase the content of anthocyanins in candidate plant species which cannot offer satisfactory levels of these precious compounds.

View Article and Find Full Text PDF

The genetic basis underlying the phenotype of purple tomatoes guides an understanding of these varieties which were introduced over 10 years ago.

View Article and Find Full Text PDF

Iodine biofortification has been gaining interest in recent years as a sustainable and innovative approach to eradicate iodine deficiency disorders. Studying the impact of iodine biofortification on plant phenotype, biochemical and physiological parameters is crucial to leverage the expertise and best practices for the agro-food industry and human health. The aim of this study was to evaluate iodine biofortification on the main quantitative and qualitative traits of basil (Ocimum basilicum L.

View Article and Find Full Text PDF

Tomato () fruits are typically red at ripening, with high levels of carotenoids and a low content in flavonoids. Considerable work has been done to enrich the spectrum of their health-beneficial phytochemicals, and interspecific crosses with wild species have successfully led to purple anthocyanin-colored fruits. The () tomato accession inherited from the ability to accumulate anthocyanins in fruit peel through the introgression of loci controlling anthocyanin pigmentation, including four R2R3 MYB transcription factor-encoding genes.

View Article and Find Full Text PDF

Shelf life is the time a product can be stored without losing its qualitative characteristics. It represents one of the most critical quality traits for food products, particularly for fleshy fruits, including tomatoes. Tomatoes' shelf life is usually shortened due to fast over-ripening caused by several different factors, among which changes in temperature, respiration and pathogen exposure.

View Article and Find Full Text PDF

The anthocyanin biosynthetic pathway is well characterized in plants. However, in tomato ( L.) an exhaustive knowledge of its regulation is still lacking.

View Article and Find Full Text PDF

Iodine deficiency is a widespread micronutrient malnutrition problem, and the addition of iodine to table salt represents the most common prophylaxis tool. The biofortification of crops with iodine is a recent strategy to further enrich the human diet with a potentially cost-effective, well accepted and bioavailable iodine source. Understanding how iodine functions in higher plants is key to establishing suitable biofortification approaches.

View Article and Find Full Text PDF

Anthocyanins are water-soluble polyphenolic compounds with a high nutraceutical value. Despite the fact that cultivated tomato varieties do not accumulate anthocyanins in the fruit, the biosynthetic pathway can be activated in the vegetative organs by several environmental stimuli. Little is known about the molecular mechanisms regulating anthocyanin synthesis in tomato.

View Article and Find Full Text PDF

Plant survival is greatly impaired when oxygen levels are limiting, such as during flooding or when anatomical constraints limit oxygen diffusion. Oxygen sensing in Arabidopsis thaliana is mediated by Ethylene Responsive Factor (ERF)-VII transcription factors, which control a core set of hypoxia- and anoxia-responsive genes responsible for metabolic acclimation to low-oxygen conditions. Anoxic conditions also induce genes related to reactive oxygen species (ROS).

View Article and Find Full Text PDF

Plants under low-oxygen availability adapt their metabolism to compensate for the lower ATP production that arises from the limited respiratory activity in mitochondria. Anaerobic glycolysis requires continuous fuelling of carbon units, also provided from sucrose. The anaerobic catabolism of sucrose is thought to require the activity of sucrose synthase, being this enzymatic reaction more energetically favourable than that of invertase.

View Article and Find Full Text PDF
Article Synopsis
  • A plant's growth size depends on its genetics and the environmental conditions it experiences daily.
  • Both efficient carbon metabolism and the plant hormone gibberellin are crucial for optimal growth.
  • Research shows that sugar shortages at night affect gibberellin production the next day, linking photosynthesis efficiency over several days to daily gibberellin levels, allowing the plant to adapt its growth to its environment.
View Article and Find Full Text PDF

its deficiency affects about two billion people worldwide. Fruits and vegetables are usually poor sources of iodine; however, plants can accumulate iodine if it is either present or exogenously administered to the soil. The biofortification of crops with iodine has therefore been proposed as a strategy for improving human nutrition.

View Article and Find Full Text PDF

Low oxygen stress often occurs during the life of green organisms, mostly due to the environmental conditions affecting oxygen availability. Both plants and algae respond to low oxygen by resetting their metabolism. The shift from mitochondrial respiration to fermentation is the hallmark of anaerobic metabolism in most organisms.

View Article and Find Full Text PDF

The crucial role of carbohydrate in plant growth and morphogenesis is widely recognized. In this study, we describe the characterization of nana, a dwarf Arabidopsis (Arabidopsis thaliana) mutant impaired in carbohydrate metabolism. We show that the nana dwarf phenotype was accompanied by altered leaf morphology and a delayed flowering time.

View Article and Find Full Text PDF

Plants are a poor source of iodine, an essential micronutrient for human health. Several attempts of iodine biofortification of crops have been carried out, but the scarce knowledge on the physiology of iodine in plants makes results often contradictory and not generalizable. In this work, we used a molecular approach to investigate how the ability of a plant to accumulate iodine can be influenced by different mechanisms.

View Article and Find Full Text PDF

Anthocyanins are high value plant antioxidants, which are not present in the fruits of the cultivated tomato. However, both the dominant gene Anthocyanin fruit (Aft) and the recessive gene atroviolacea (atv), when introgressed into the domesticated tomato from two different wild Solanum species, stimulate a limited anthocyanin pigmentation. Surprisingly, the double mutant Aft/Aft atv/atv gives rise to intensely purple pigmented tomatoes.

View Article and Find Full Text PDF

Anthocyanins are naturally occurring pigments ubiquitously present in plants and, as such, part of the human diet. Owing to their biological activity, anthocyanins have beneficial health effects but, unfortunately, are not present in some important crop plants, such as tomatoes. Recently, a 'purple' tomato, highly enriched with anthocyanins, was produced by the ectopic expression of two selected transcription factors from the ornamental flower snapdragon.

View Article and Find Full Text PDF

Rice (Oryza sativa) seeds can germinate in the complete absence of oxygen. Under anoxia, the rice coleoptile elongates, reaching a length greater than that of the aerobic one. In this article, we compared and investigated the transcriptome of rice coleoptiles grown under aerobic and anaerobic conditions.

View Article and Find Full Text PDF