Background: The high growth of Next Generation Sequencing data currently demands new knowledge extraction methods. In particular, the RNA sequencing gene expression experimental technique stands out for case-control studies on cancer, which can be addressed with supervised machine learning techniques able to extract human interpretable models composed of genes, and their relation to the investigated disease. State of the art rule-based classifiers are designed to extract a single classification model, possibly composed of few relevant genes.
View Article and Find Full Text PDF