The morphological, spectroscopic and rheological properties of silver nanoparticles (AgNPs) synthesized in situ within commercial PEDOT:PSS formulations, labeled PP@NPs, were systematically investigated by varying different synthetic parameters (NaBH/AgNO molar ratio, PEDOT:PSS formulation and silver and PEDOT:PSS concentration in the reaction medium), revealing that only the reagent ratio affected the properties of the resulting nanoparticles. Combining the results obtained from the field-emission scanning electron microscopy analysis and UV-Vis characterization, it could be assumed that PP@NPs' stabilization occurs by means of PSS chains, preferably outside of the PEDOT:PSS domains with low silver content. Conversely, with high silver content, the particles also formed in PEDOT-rich domains with the consequent perturbation of the polaron absorption features of the conjugated polymer.
View Article and Find Full Text PDFA mixture of polymeric complexes based on the reaction between Re(CO)Cl and the porous polymeric network coming from the coupling of melamine and benzene-1,3,5-tricarboxaldehyde was obtained and characterized by FTIR, NMR, SEM, XPS, ICP, XRD, and cyclic voltammetry (CV). The formed rhenium-based porous hybrid material reveals a noticeable capability of CO absorption. The gas absorption amount measured at 295 K was close to 44 cm/g at 1 atm.
View Article and Find Full Text PDFWe synthetized a new rod-coil block copolymer (BCP) based on the semiconducting polymerpoly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-:4,5-]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-]thiophenediyl}) (PTB7) and poly-4-vinylpyridine (P4VP), tailored to produce water-processable nanoparticles (WPNPs) in blend with phenyl-C71-butyric acid methyl ester (PCBM). The copolymer PTB7--P4VP was completely characterized by means of two-dimensional nuclear magnetic resonance (2D-NMR), matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS), size-exclusion chromatography (SEC), and differential scanning calorimetry (DSC) to confirm the molecular structure. The WPNPs were prepared through an adapted miniemulsion approach without any surfactants.
View Article and Find Full Text PDFThe use of water-processable nanoparticles (WPNPs) is an emerging strategy for the processing of organic semiconducting materials into aqueous medium, dramatically reducing the use of chlorinated solvents and enabling the control of the nanomorphology in OPV active layers. We studied amphiphilic rod-coil block copolymers (BCPs) with a different chemical structure and length of the hydrophilic coil blocks. Using the BCPs blended with a fullerene acceptor material, we fabricated NP-OPV devices with a sustainable approach.
View Article and Find Full Text PDFUsing ultrafast spectroscopy, we investigate the photophysics of water-processable nanoparticles composed of a block copolymer electron donor and a fullerene derivative electron acceptor. The block copolymers are based on a poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] rod, which is covalently linked with 2 or 100 hydrophilic coil units. In both samples the photogenerated excitons in the blend nanoparticles migrate in tens of ps to a donor/acceptor interface to be separated into free charges.
View Article and Find Full Text PDFHere we present for the first time polymer solar cells that incorporate biological material that show state of the art efficiencies in excess of 8%. The performance of inverted polymer solar cells was improved significantly after deposition of ZnO nanoparticles (ZnO-NPs) together with a thin deoxyribonucleic acid nanolayer and used as an electron extraction layer (EEL). The ZnO-NPs/DNA double layer improved the rectifying ratio, shunt resistance of the cells as well as lowering the work function of the electron-collecting contact.
View Article and Find Full Text PDFThree NIR-emitting neutral Ir(III) complexes [Ir(iqbt)2 (dpm)] (1), [Ir(iqbt)2 (tta)] (2), and [Ir(iqbt)2 (dtdk)] (3) based on the 1-(benzo[b]thiophen-2-yl)-isoquinolinate (iqtb) were synthesized and characterized (dpm=2,2,6,6-tetramethyl-3,5-heptanedionate; tta=2-thienoyltrifluoroacetonate; dtdk=1,3-di(thiophen-2-yl)propane-1,3-dionate). The compounds emit between λ=680 and 850 nm with high luminescence quantum yields (up to 16 %). By combining electrochemistry, photophysical measurements, and computational modelling, the relationship between the structure, energy levels, and properties were investigated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2012
Structural colors are the object of a wide scientific interest, not only for the potential technical applications of their intriguing optical properties but also for the need of coloring agents to replace toxic and carcinogenic dyes. We present a simple methodology to obtain polymer opal surfaces of self-assembled core-shell nanoparticles with different degree of order for structural color applications. Polymer nanospheres prepared by surfactant-free emulsion radical copolymerization of an hydrophobic and an hydrophilic comonomer (styrene and methacrylic acid) spontaneously assemble into core-shell particles.
View Article and Find Full Text PDFThe synthesis and the molecular and photophysical characterization, together with solid state and solution structure analysis, of a series of europium complexes based on β-diketonate ligands are reported. The Eu(III) complex emission, specifically its photoluminescence quantum yield (PL-QY), can be tuned by changing ligands which finely modifies the environment of the metal ion. Steady-state and time-resolved emission spectroscopy and overall PL-QY measurements are reported and related to geometrical features observed in crystal structures of some selected compounds.
View Article and Find Full Text PDFNanosized zeolite L crystals containing about 550 strongly luminescent acceptor molecules have been modified by grafting a conjugated oligomer on their external surface. The 25 nm sized crystals have consequently been embedded in polymeric nanofibers obtained by electrospinning. The fluorescent molecule grafted on the external surface allows addressing the guests in the zeolite nanochannels through an efficient two-step energy transfer from the polymer nanofiber.
View Article and Find Full Text PDFIn order to understand the factors responsible for the improved efficiency and stability of organic light-emitting diodes (OLEDs) based on poly(9,9-dioctylfluorene) (PFO) when triphenylamine (TPA) is introduced as lateral fluorene substituent, we synthetize mono-disperse fluorene-thiophene oligomers as model compounds. Their blends with different concentrations of the fluorenone containing oligomer are studied in order to verify if only a reduction of ketonic defect sites or also an impeded energy transfer (ET) towards such sites are responsible for the suppression of the green emission band. We show that the introduction of TPA groups leads specifically both to an antioxidant action and a reduced ET towards residual defect sites, thanks to the environmental micro-encapsulation role played by TPA units surrounding the polymer backbone.
View Article and Find Full Text PDFAll-organic nanostructured host-guest systems, based on dyes inserted in the nanochannels of perhydrotriphenylene (PHTP) and deoxycholic acid (DCA), show enhanced fluorescence properties with quantum yields even higher than those of the dyes in solution, thanks to the high concentration of emissive molecules with controlled spatial and geometrical organization that prevents aggregation quenching. Both host molecules crystallize, growing with the long axis oriented along the direction of the nanochannels where the linear-chain dyes are inserted, to yield crystals emitting well-polarized light. For the DCA-based host-guests, homogeneous thin films suitable for several applications are obtained.
View Article and Find Full Text PDFThe nonlinear optical properties of a functionalized poly(thiophene azine), namely, poly(3,4-didodecylthiophene azine), PAZ, at the optical telecommunication wavelength of 1550 nm are investigated by means of the closed-aperture z-scan technique in both thin films and solutions. Values of chi((3))=(2.4+/-0.
View Article and Find Full Text PDFWe demonstrate field effect transistors based on organic semiconductor molecules dispersed in a self-organized polystyrene (PS) latex bead matrix. An aqueous colloidal composite made of PS and tetrahexylsexithiophene (H4T6) is deposited with a micropipet into the channel of a bottom-contact field effect transistor. The beads self-organize into a network whose characteristic distances are governed by their packing.
View Article and Find Full Text PDF