The constant change in microplastics (MP) due to exposure to environmental conditions leads to physical and chemical changes that enhance their ability to transport other pollutants, increasing the concern about their widespread presence in the environment. This work aimed to simulate the aging process of six MP (polyamide 6, unplasticized polyvinyl chloride, low-density polyethylene, polystyrene, polyethylene-co-vinyl acetate, polypropylene) in freshwater and seawater ecosystems at laboratory scale and evaluate its effects through optical microscope observation, Fourier transform infrared spectroscopy-Attenuated Total Reflectance (FTIR-ATR), Raman spectroscopy, and thermal gravimetric analysis (TGA). Through a combined experimental study of aged MP, the degradation by UV interaction was evidenced by the appearance of new infrared bands in the FTIR spectra assigned to ketones and hydroxyl groups.
View Article and Find Full Text PDFMicroplastics (MP) are spread into all ecosystems and represent a threat to the equilibrium of the environment and human health, not only due to their intrinsic characteristics but also to their action as effective carriers of contaminants, such as pesticides, pharmaceuticals, polychlorinated biphenyls and polycyclic aromatic hydrocarbons. The pesticide α-endosulfan is persistent and spread in the environment. The MP are another possible way of dissemination to be considered in the fate of this pesticide.
View Article and Find Full Text PDFPlastics have been one of the most useful materials in the world, due to their distinguishing characteristics: light weight, strength, flexibility, and good durability. In recent years, the growing consumption of plastics in industries and domestic applications has revealed a serious problem in plastic waste treatments. Pollution by microplastics has been recognized as a serious threat since it may contaminate all ecosystems, including oceans, terrestrial compartments, and the atmosphere.
View Article and Find Full Text PDF