Mammalian genomes harbor abundant transposable elements (TEs) and their remnants, with numerous epigenetic repression mechanisms enacted to silence TE transcription. However, TEs are upregulated during early development, neuronal lineage, and cancers, although the epigenetic factors contributing to the transcription of TEs have yet to be fully elucidated. Here, we demonstrate that the male-specific lethal (MSL)-complex-mediated histone H4 acetylation at lysine 16 (H4K16ac) is enriched at TEs in human embryonic stem cells (hESCs) and cancer cells.
View Article and Find Full Text PDFSingle cell biology has the potential to elucidate many critical biological processes and diseases, from development and regeneration to cancer. Single cell analyses are uncovering the molecular diversity of cells, revealing a clearer picture of the variation among and between different cell types. New techniques are beginning to unravel how differences in cell state-transcriptional, epigenetic, and other characteristics-can lead to different cell fates among genetically identical cells, which underlies complex processes such as embryonic development, drug resistance, response to injury, and cellular reprogramming.
View Article and Find Full Text PDFSTAR Protoc
September 2020
Protein synthesis inhibitors (e.g., cycloheximide) block mitotic entry, suggesting that cell cycle progression requires protein synthesis until right before mitosis.
View Article and Find Full Text PDFCell division is a fundamental cellular process and the evolutionarily conserved networks that control cell division cycles adapt during development, tissue regeneration, cell de-differentiation and reprogramming, and a variety of pathological conditions. Embryonic development is a prime example of such versatility: fast, clock-like divisions hallmarking embryonic cells at early developmental stages become slower and controlled during cellular differentiation and lineage specification. In this review, we compare and contrast the unique cell cycle of mouse and human embryonic stem cells with that of early embryonic cells and of differentiated cells.
View Article and Find Full Text PDFDuring early development, extrinsic triggers prompt pluripotent cells to begin the process of differentiation. When and how human embryonic stem cells (hESCs) irreversibly commit to differentiation is a fundamental yet unanswered question. By combining single-cell imaging, genomic approaches, and mathematical modeling, we find that hESCs commit to exiting pluripotency unexpectedly early.
View Article and Find Full Text PDFCell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases.
View Article and Find Full Text PDFMitosis is triggered by the activation of Cdk1-cyclin B1 and its translocation from the cytoplasm to the nucleus. Positive feedback loops regulate the activation of Cdk1-cyclin B1 and help make the process irreversible and all-or-none in character. Here we examine whether an analogous process, spatial positive feedback, regulates Cdk1-cyclin B1 redistribution.
View Article and Find Full Text PDFFor the cell-division cycle to progress, hundreds of genes and proteins must be coordinately regulated. Systems-level studies of this cycle show that positive-feedback loops help to keep events in sync.
View Article and Find Full Text PDFThe mitogen-activated protein kinase (MAPK) network is a conserved signalling module that regulates cell fate by transducing a myriad of growth-factor signals. The ability of this network to coordinate and process a variety of inputs from different growth-factor receptors into specific biological responses is, however, still not understood. We investigated how the MAPK network brings about signal specificity in PC-12 cells, a model for neuronal differentiation.
View Article and Find Full Text PDF