Publications by authors named "Silvia Carloni"

Mitochondrial dysfunction is a key event in many pathological conditions, including neurodegenerative processes. When mitochondria are damaged, they release damage-associated molecular patterns (DAMPs) that activate mito-inflammation. The present study assessed mito-inflammation after in vitro oxygen-glucose deprivation as a representation of ischaemia, followed by reoxygenation (OGD/R) of HT22 cells and modulation of the inflammatory response by melatonin.

View Article and Find Full Text PDF

The Notch1 signaling pathway plays a crucial role in the development of the central nervous system, governing pivotal functional activities in the brain, such as neurogenesis. Sirt3 is instrumental in managing mitochondrial homeostasis and is essential to cell survival. Dysregulation of these signaling pathways is implicated in the pathogenesis of a wide range of diseases, including neurodegenerative disorders such as stroke.

View Article and Find Full Text PDF
Article Synopsis
  • Therapeutic hypothermia (TH) is now a standard treatment to reduce brain damage in newborns with hypoxic-ischaemic encephalopathy (HIE), but many still face high rates of death and disabilities.
  • CHF6467 is a modified form of nerve growth factor (NGF) that does not cause pain and has shown protective effects on neurons in rodent models when used with hypothermia.
  • This study suggests that combining intranasal administration of CHF6467 with TH significantly reduces brain damage and improves motor and memory function in neonatal HIE, making it a promising treatment option.
View Article and Find Full Text PDF

Background Aims: Dendritic cells (DCs) are professional antigen-presenting cells of the mammalian immune system. Ex vivo differentiated DCs represent a unique Advanced Therapy Medicinal Product (ATMP), used in several clinical trials as personalized cancer immunotherapy. The therapy's reliability depends on its capacity to produce high-quality mature DCs (mDCs) in compliance with Good Manufacturing Practices.

View Article and Find Full Text PDF

For advanced therapy medicinal products, the development and validation of potency assays are required, in accordance with international guidelines, to characterise the product and obtain reliable and consistent data. Our purpose was to validate the killing assay for the evaluation of autologous anti-CD19 chimeric antigen receptor (CAR) T potency. We used CD4 + and CD8 + lymphocytes or anti-CD19 CAR-T cells as effector cells and REH (CD19 +) or MOLM-13 (CD19 -) cell lines as target cells.

View Article and Find Full Text PDF

Promoting neural cell proliferation may represent an important strategy for enhancing brain repair after developmental brain injury. The present study aimed to assess the effects of melatonin on cell proliferation after an ischemic injury in the developing hippocampus, focusing on cell cycle dynamics. After in vivo neonatal hypoxia-ischemia (HI), hippocampal cell cycle dynamics were assessed by flow cytometry, together with histological evaluation of dentate gyrus cellularity and proliferation.

View Article and Find Full Text PDF

Oxidative stress (OS) and inflammation play a key role in the development of hypoxic-ischemic (H-I) induced brain damage. Following H-I, rapid neuronal death occurs during the acute phase of inflammation, and activation of the oxidant-antioxidant system contributes to the brain damage by activated microglia. So far, in an animal model of perinatal H-I, it was showed that neuroprostanes are present in all brain damaged areas, including the cerebral cortex, hippocampus and striatum.

View Article and Find Full Text PDF

Despite advances in obstetric and neonatal care, challenges remain in early identification of neonates with encephalopathy due to hypoxia-ischemia who are undergoing therapeutic hypothermia. Therefore, there is a deep search for biomarkers that can identify brain injury. The aims of this study were to investigate the serum and brain expressions of two potential biomarkers, miR-126/miR-146a, in a preclinical model of hypoxia-ischemia (HI)-induced brain injury, and to explore their modulation during melatonin treatment.

View Article and Find Full Text PDF

Surgery is frequently associated with excessive oxidative stress. Melatonin acts as an antioxidant and transient melatonin deficiency has been described in neonatal surgical patients. This randomized, blinded, prospective pilot study tested the hypothesis that oral melatonin supplementation in newborn infants undergoing surgery is effective in reducing perioperative oxidative stress.

View Article and Find Full Text PDF

The endocannabinoid (EC) system is a complex cell-signaling system that participates in a vast number of biological processes since the prenatal period, including the development of the nervous system, brain plasticity, and circuit repair. This neuromodulatory system is also involved in the response to endogenous and environmental insults, being of special relevance in the prevention and/or treatment of vascular disorders, such as stroke and neuroprotection after neonatal brain injury. Perinatal hypoxia-ischemia leading to neonatal encephalopathy is a devastating condition with no therapeutic approach apart from moderate hypothermia, which is effective only in some cases.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that when brain cells get injured from a lack of oxygen and glucose, a process called autophagy (which helps cells clean up and recycle) doesn’t work well.
  • They studied how melatonin, a natural sleep aid, helps fix this problem by improving the functioning of important proteins like Rab7, Sirt1, and FoxO1 in brain cells.
  • Their results showed that melatonin can help protect brain cells from damage by making autophagy work better and preventing cell death.
View Article and Find Full Text PDF

Mesenchymal stem cells are multipotent stem cells that reside in many human tissues and organs. Mesenchymal stem cells are widely used in experimental and clinical regenerative medicine due to their capability to transdifferentiate into various lineages. However, when transplanted, they lose part of their multipotency and immunomodulatory properties, and most of them die after injection into the damaged tissue.

View Article and Find Full Text PDF

Advanced therapy medical products (ATMPs) are rapidly growing as innovative medicines for the treatment of several diseases. Hence, the role of quality analytical tests to ensure consistent product safety and quality has become highly relevant. Several clinical trials involving dendritic cell (DC)-based vaccines for cancer treatment are ongoing at our institute.

View Article and Find Full Text PDF

Neonatal encephalopathy (NE) is a pathological condition affecting long-term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does not always improve outcomes; hence, researchers continue to hunt for pharmaceutical compounds. Melatonin treatment has benefitted neonates with hypoxic-ischemic (HI) brain injury.

View Article and Find Full Text PDF

The first step to obtain a cellular suspension from tissues is the disaggregation procedure. The cell suspension method has to provide a representative sample of the different cellular subpopulations and to maximize the number of viable functional cells. Here, we analyzed specific cell functions in cell suspensions from several rat tissues obtained by two different methods, automated-mechanical and enzymatic disaggregation.

View Article and Find Full Text PDF

Efficient cell-to-cell communication is essential for tissue development, homeostasis, and the maintenance of cellular functions after injury. Tunneling nanotubes (TNTs) have emerged as a new important method of cell-to-cell communication. TNTs are primarily established between stressed and unstressed cells and can transport a variety of cellular components.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Chemotherapy, the treatment of choice in non-operable cases, achieves a dismal success rate, raising the need for new therapeutic options. In about 25% of NSCLC, the activating mutations of the oncogene define a subclass that cannot benefit from tyrosine kinase inhibitors (TKIs).

View Article and Find Full Text PDF

Mitochondrial dysfunction is considered one of the hallmarks of ischemia/reperfusion injury. Mitochondria are plastic organelles that undergo continuous biogenesis, fusion, and fission. They can be transferred between cells through tunneling nanotubes (TNTs), dynamic structures that allow the exchange of proteins, soluble molecules, and organelles.

View Article and Find Full Text PDF

For many years, oncological clinical trials have taken advantage of dendritic cells (DC) for the design of DC-based cellular therapies. This has required the design of suitable quality control assays to evaluate the potency of these products. The purpose of our work was to develop and validate a novel bioassay that uses flow cytometry as a read-out measurement.

View Article and Find Full Text PDF

Prostate Cancer (PCa) is one of the most frequently identified urological cancers. PCa patients are often over-diagnosed due to still not highly specific diagnostic methods. The need for more accurate diagnostic tools to prevent overestimated diagnosis and unnecessary treatment of patients with non-malignant conditions is clear, and new markers and methods are strongly desirable.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF
Article Synopsis
  • Tumor protein p53 is crucial for regulating cell processes like DNA repair and the cell cycle, and the study investigates how a drug called Kevetrin affects different types of acute myeloid leukemia (AML) cells based on their p53 status.
  • The research found that while Kevetrin had no effect on TP53 wild-type AML cells with short exposure, it significantly slowed growth and induced cell death in TP53-mutant cells after continuous treatment.
  • Additionally, gene expression changes indicated that Kevetrin alters important cellular pathways, suggesting its potential as a treatment option for AML patients regardless of their TP53 gene status.
View Article and Find Full Text PDF

The number of functions controlled by the endocannabinoid system in health and disease continues growing over the years. In the brain, these include the modulation of harmful events such as glutamate excitotoxicity, oxidative stress, and inflammation, mainly regulated by activation/blockade of CB/CB cannabinoid receptors. In the present work, we evaluated the capacity of the CB antagonist/CB agonist synthetic cannabinoid URB447 on reducing neurodegeneration after brain injury.

View Article and Find Full Text PDF

This study was conducted to evaluate the expression of fibrinogen receptors on platelets of Philadelphia-negative chronic myeloproliferative neoplasm (MPN) patients. We collected blood samples from 40 consecutive MPN patients and healthy volunteers. We performed flow cytometry analysis of P-selectin expression and integrin beta-3, activation of glycoprotein (GP) IIb/IIIa and fibrinogen receptor exposure (PAC-1 binding).

View Article and Find Full Text PDF