Publications by authors named "Silvia Canaider"

Oxytocin (OXT) is a neurohypophysial nonapeptide that exerts its effects mainly through the oxytocin receptor (OXTR). Several studies have pointed out the role of OXT in the modulation of stem cell (SC) fate and properties. SCs are undifferentiated cells characterized by a remarkable ability to self-renew and differentiate into various cell types of the body.

View Article and Find Full Text PDF

Regenerative medicine aims to identify new research strategies for the repair and restoration of tissues damaged by pathological or accidental events. Mesenchymal stem cells (MSCs) play a key role in regenerative medicine approaches due to their specific properties, such as the high rate of proliferation, the ability to differentiate into several cell lineages, the immunomodulatory potential, and their easy isolation with minimal ethical issues. One of the main goals of regenerative medicine is to modulate, both in vitro and in vivo, the differentiation potential of MSCs to improve their use in the repair of damaged tissues.

View Article and Find Full Text PDF

Human adipose-derived stem cells (hASCs) are commonly harvested in minimally invasive contexts with few ethical concerns, and exhibit self-renewal, multi-lineage differentiation, and trophic signaling that make them attractive candidates for cell therapy approaches. The identification of natural molecules that can modulate their biological properties is a challenge for many researchers. Oxytocin (OXT) is a neurohypophyseal hormone that plays a pivotal role in the regulation of mammalian behavior, and is involved in health and well-being processes.

View Article and Find Full Text PDF

Phytochemicals from various medicinal plants are well known for their antioxidant properties and anti-cancer effects. Many of these bioactive compounds or natural products have demonstrated effects against inflammation, while some showed a role that is only approximately described as anti-inflammatory. In particular, naphthoquinones are naturally-occurring compounds with different pharmacological activities and allow easy scaffold modification for drug design approaches.

View Article and Find Full Text PDF

Among perinatal stem cells of the umbilical cord, human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation.

View Article and Find Full Text PDF

Cytoskeletal proteins provide architectural and signaling cues within cells. They are able to reorganize themselves in response to mechanical forces, converting the stimuli received into specific cellular responses. Thus, the cytoskeleton influences cell shape, proliferation, and even differentiation.

View Article and Find Full Text PDF

Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid receptors (ORs), transmembrane proteins belonging to the super-family of G-protein-coupled receptors, and are expressed throughout the body; the receptors are the δ opioid receptor (DOR), μ opioid receptor (MOR), κ opioid receptor (KOR), and nociceptin/orphanin FQ receptor (NOP).

View Article and Find Full Text PDF

Cell culture conditions influence several biological and biochemical features of stem cells (SCs), including the membrane lipid profile, thus limiting the use of SCs for cell therapy approaches. The present study aims to investigate whether the in vitro culture may alter the membrane fatty acid signature of human Amniotic Epithelial Cells (hAECs). The analysis of the membrane fatty acid composition of hAECs cultured in basal medium showed a loss in polyunsaturated fatty acids (PUFA), in particular in omega-6 (ω-6) content, compared to freshly isolated hAECs.

View Article and Find Full Text PDF

Cellular senescence plays a very important role in organismal aging increasing with age and in age-related diseases (ARDs). This process involves physiological, structural, biochemical, and molecular changes of cells, leading to a characteristic trait referred to "senescence-associated secretory phenotype (SASP)." In particular, with aging, stem cells (SCs) exhibit a diminished capacity of self-renewal and show a decline in their functionality.

View Article and Find Full Text PDF

In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome.

View Article and Find Full Text PDF

A wide variety of peptides not only interact with the cell surface, but govern complex signaling from inside the cell. This has been referred to as an "intracrine" action, and the orchestrating molecules as "intracrines". Here, we review the intracrine action of dynorphin B, a bioactive end-product of the gene, on nuclear opioid receptors and nuclear protein kinase C signaling to stimulate the transcription of a gene program of cardiogenesis.

View Article and Find Full Text PDF

Rhythmic oscillatory patterns sustain cellular dynamics, driving the concerted action of regulatory molecules, microtubules, and molecular motors. We describe cellular microtubules as oscillators capable of synchronization and swarming, generating mechanical and electric patterns that impact biomolecular recognition. We consider the biological relevance of seeing the inside of cells populated by a network of molecules that behave as bioelectronic circuits and chromophores.

View Article and Find Full Text PDF

Stem cells undergo senescence both in vivo, contributing to the progressive decline in self-healing mechanisms, and in vitro during prolonged expansion. Here, we show that an early developmental zebrafish embryo extract (ZF1) could act as a modulator of senescence in human mesenchymal stem cells (hMSCs) isolated from both adult tissues, including adipose tissue (hASCs), bone marrow (hBM-MSCs), dental pulp (hDP-MSCs), and a perinatal tissue such as the Wharton's Jelly (hWJ-MSCs). In all the investigated hMSCs, ZF1 decreased senescence-associated β-galactosidase (SA β-gal) activity and enhanced the transcription of , encoding the catalytic telomerase core.

View Article and Find Full Text PDF

Human adult stem cells hold promise for regenerative medicine. They are usually expanded for multiple passages to increase cell yield prior to transplantation. Unfortunately, prolonged culture leads to cell senescence, a major drawback from successful outcomes in cell therapy approaches.

View Article and Find Full Text PDF

Human Mesenchymal Stem Cells (hMSCs) undergo senescence in lifespan. In most clinical trials, hMSCs experience long-term expansion to increase cell number prior to transplantation, which unfortunately leads to cell senescence, hampering post-transplant outcomes. Hydrogen peroxide (HO) represents a rapid, time and cost-effective tool, commonly used as oxidative stress tantalizing the stem cell ability to cope with a hostile environment, recapitulating the onset and progression of cellular senescence.

View Article and Find Full Text PDF

The human body constantly regenerates after damage due to the self-renewing and differentiating properties of its resident stem cells. To recover the damaged tissues and regenerate functional organs, scientific research in the field of regenerative medicine is firmly trying to understand the molecular mechanisms through which the regenerative potential of stem cells may be unfolded into a clinical application. The finding that some organisms are capable of regenerative processes and the study of conserved evolutionary patterns in tissue regeneration may lead to the identification of natural molecules of ancestral species capable to extend their regenerative potential to human tissues.

View Article and Find Full Text PDF

Metal ion release and accumulation is considered to be a factor responsible for the high failure rates of metal-on-metal (MoM) hip implants. Numerous studies have associated the presence of these ions, besides other factors, including a hypoxia‑like response and changes in pH due to metal corrosion leading to the induction of the oxidative stress response. The aim of the present study was to verify whether, in patients with a MoM hip prosthesis, mRNA and protein expression of HMOX‑1 was modulated by the presence of metal ions and whether patients without prostheses exhibit a different expression pattern of this enzyme.

View Article and Find Full Text PDF

In spite of the growing body of evidence on the biology of the Zebrafish embryo and stem cells, including the use of Stem Cell Differentiation Stage Factors (SCDSFs) taken from Zebrafish embryo to impact cancer cell dynamics, comparatively little is known about the possibility to use these factors to modulate the homeostasis of normal human stem cells or to modulate the behavior of cells involved in different pathological conditions. In the present review we recall in a synthetic way the most important researches about the use of SCDSFs in reprogramming cancer cells and in modulating the high speed of multiplication of keratinocytes which is characteristic of some pathological diseases like psoriasis. Moreover we add here the results about the capability of SCDSFs in modulating the homeostasis of human adiposederived stem cells (hASCs) isolated from a fat tissue obtained with a novel-non enzymatic method and device.

View Article and Find Full Text PDF

Cysteine/tyrosine-rich 1 (CYYR1) is a gene we previously identified on human chromosome 21 starting from an in-depth bioinformatics analysis of chromosome 21 segment 40/105 (21q21.3), where no coding region had previously been predicted. CYYR1 was initially characterized as a four-exon gene, whose brain-derived cDNA sequencing predicts a 154-amino acid product.

View Article and Find Full Text PDF

Background: All living organisms are made of individual and identifiable cells, whose number, together with their size and type, ultimately defines the structure and functions of an organism. While the total cell number of lower organisms is often known, it has not yet been defined in higher organisms. In particular, the reported total cell number of a human being ranges between 10(12) and 10(16) and it is widely mentioned without a proper reference.

View Article and Find Full Text PDF

The "5' end mRNA artifact" issue refers to the incorrect assignment of the first AUG codon in an mRNA, due to the incomplete determination of its 5' end sequence. We performed a systematic identification of coding regions at the 5' end of all human known mRNAs, using an automated expressed sequence tag (EST)-based approach. Following parsing of more than 7 million BLAT alignments, we found 477 human loci, out of 18,665 analyzed, in which an extension of the mRNA 5' coding region was identified.

View Article and Find Full Text PDF

Human RCAN3 (regulator of calcineurin 3) belongs to the human RCAN gene family.In this study we provide, with in silico and in vitro analyses, the first detailed description of the human multi-transcript RCAN3 locus. Its analysis revealed that it is composed of a multigene system that includes at least 21 RCAN3 alternative spliced isoforms (16 of them identified here for the first time) and a new RCAN3 antisense gene (RCAN3AS).

View Article and Find Full Text PDF
Article Synopsis
  • Several existing tools for analyzing gene expression data are often limited by specific contexts or formats, usually requiring only gene lists as input.
  • TRAM (Transcriptome Mapper) is a versatile new tool designed to create and analyze transcriptome maps from various gene expression data sources, incorporating functionalities like gene symbol assignment and advanced data normalization methods.
  • The software offers two modes—'Map' for generating quantitative transcriptome representations and 'Cluster' for identifying sets of over/under-expressed genes—along with statistical significance assessments, demonstrated through a test comparing human CD34+ cells and megakaryocytic cells.
View Article and Find Full Text PDF