During the last years, many evidences have been accumulating about the phytohormone indole-3-acetic acid (IAA) as a multifaceted compound in the microbial world, with IAA playing a role as a bacterial intra and intercellular signaling molecule or as an effector during pathogenic or beneficial plant-bacteria interactions. However, pretty much nothing is known on the mechanisms that bacteria use to modulate IAA homeostasis, in particular on IAA active transport systems. Here, by an approach combining in silico three-dimensional (3D) structural modeling and docking, mutagenesis, quantitative gene expression analysis, and HPLC FLD auxin quantitative detection, for the first time a bacterial multidrug and toxic compound extrusion (MATE) transporter was demonstrated to be involved in the efflux of IAA, as well as of its conjugate IAA-Lysine, in the plant pathogenic hyperplastic bacterium Pseudomonas savastanoi pv.
View Article and Find Full Text PDFA multiphasic approach was used to decipher the phenotypic features, genetic diversity, and phylogenetic position of 46 Curtobacterium spp. strains isolated from dry beans and other annual crops in Iran and Spain. Pathogenicity tests, resistance to arsenic compounds, plasmid profiling and BOX-PCR were performed on the strains.
View Article and Find Full Text PDF