Publications by authors named "Silvia Barcelo-Batllori"

Global analysis of protein phosphorylation by mass spectrometry proteomic techniques has emerged in the last decades as a powerful tool in biological and biomedical research. However, there are several factors that make the global study of the phosphoproteome more challenging than measuring non-modified proteins. The low stoichiometry of the phosphorylated species and the need to retrieve residue specific information require particular attention on sample preparation, data acquisition and processing to ensure reproducibility, qualitative and quantitative robustness and ample phosphoproteome coverage in phosphoproteomic workflows.

View Article and Find Full Text PDF

Many studies have shown both the CD28-D80/86 costimulatory pathway and the PD-1-PD-L1/L2 coinhibitory pathway to be important signals in modulating or decreasing the inflammatory profile in ischemia-reperfusion injury (IRI) or in a solid organ transplant setting. The importance of these two opposing pathways and their potential synergistic effect led our group to design a human fusion recombinant protein with CTLA4 and PD-L2 domains named HYBRI. The objective of our study was to determine the HYBRI binding to the postulated ligands of CTLA4 (CD80) and PD-L2 (PD-1) using the Surface Plasmon Resonance technique and to evaluate the in vivo HYBRI effects on two representative kidney inflammatory models-rat renal IRI and allogeneic kidney transplant.

View Article and Find Full Text PDF

Background: Protein phosphatase 2A (PP2A) is a family of conserved serine/threonine phosphatases involved in several essential aspects of cell growth and proliferation. PP2ACdc55 phosphatase has been extensively related to cell cycle events in budding yeast; however, few PP2ACdc55 substrates have been identified. Here, we performed a quantitative mass spectrometry approach to reveal new substrates of PP2ACdc55 phosphatase and new PP2A-related processes in mitotic arrested cells.

View Article and Find Full Text PDF

Sirtuins are NAD-dependent deacetylases that facilitate cellular stress response. They include SirT6, which protects genome stability and regulates metabolic homeostasis through gene silencing, and whose loss induces an accelerated aging phenotype directly linked to hyperactivation of the NF-κB pathway. Here we show that SirT6 binds to the H3K9me3-specific histone methyltransferase Suv39h1 and induces monoubiquitination of conserved cysteines in the PRE-SET domain of Suv39h1.

View Article and Find Full Text PDF

Unlabelled: Despite the maturity reached by targeted proteomic strategies, reliable and standardized protocols are urgently needed to enhance reproducibility among different laboratories and analytical platforms, facilitating a more widespread use in biomedical research. To achieve this goal, the use of dimensionless relative retention times (iRT), defined on the basis of peptide standard retention times (RT), has lately emerged as a powerful tool. The robustness, reproducibility and utility of this strategy were examined for the first time in a multicentric setting, involving 28 laboratories that included 24 of the Spanish network of proteomics laboratories (ProteoRed-ISCIII).

View Article and Find Full Text PDF

Recent efforts to sequence human cancer genomes have highlighted that point mutations in genes involved in the epigenetic setting occur in tumor cells. Small cell lung cancer (SCLC) is an aggressive tumor with poor prognosis, where little is known about the genetic events related to its development. Herein, we have identified the presence of homozygous deletions of the candidate histone acetyltransferase KAT6B, and the loss of the corresponding transcript, in SCLC cell lines and primary tumors.

View Article and Find Full Text PDF

We investigated the role of VDAC2 in human epithelial thyroid tumours using proteomic 2D-DIGE analysis and qRT-PCR. We found a significant up-regulation of VDAC2 in thyroid tumours and in thyroid tumour cell lines (TPC-1 and CAL-62). We did not detect overexpression of VDAC2 in a normal thyroid cell line (Nthy-ori 3-1).

View Article and Find Full Text PDF

Aims/hypothesis: Comprehensive characterisation of the interrelation between the peripancreatic adipose tissue and the pancreatic islets promises novel insights into the mechanisms that regulate beta cell adaptation to obesity. Here, we sought to determine the main pathways and key molecules mediating the crosstalk between these two tissues during adaptation to obesity by the way of an integrated inter-tissue, multi-platform analysis.

Methods: Wistar rats were fed a standard or cafeteria diet for 30 days.

View Article and Find Full Text PDF

The Spanish team of the Human Proteome Project (SpHPP) marked the annotation of Chr16 and data analysis as one of its priorities. Precise annotation of Chromosome 16 proteins according to C-HPP criteria is presented. Moreover, Human Body Map 2.

View Article and Find Full Text PDF

Objective: This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism.

Methods: Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry.

View Article and Find Full Text PDF

Squalene is an abundant hydrocarbon present in virgin olive oil. Previous studies showed that its administration decreased atherosclerosis and steatosis in male apoE-knock-out mice. To study its effects on microsomal proteins, 1g/kg/day of squalene was administered to those mice.

View Article and Find Full Text PDF

Squalene, a hydrocarbon involved in cholesterol biosynthesis, is an abundant component in virgin olive oil. Previous studies showed that its administration decreased atherosclerosis and steatosis in male apoE knock-out mice. To study the effect of squalene on mitochondrial proteins in fatty liver, 1 g/kg/day of this isoprenoid was administered to those mice.

View Article and Find Full Text PDF

Apolipoprotein A-I Zaragoza (L144R) (apo A-I Z), has been associated with severe hypoalphalipoproteinemia and an enhanced effect of high density lipoprotein (HDL) reverse cholesterol transport. In order to perform further studies with this protein we have optimized an expression and purification method of recombinant wild-type apo A-I and apo A-I Z and produced mimetic HDL particles with each protein. An pET-45 expression system was used to produce N-terminal His-tagged apo A-I, wild-type or mutant, in Escherichia coli BL21 (DE3) which was subsequently purified by affinity chromatography in non-denaturing conditions.

View Article and Find Full Text PDF

Obesity has emerged as one of the major global epidemics of the 21st century and is now reaching alarming proportions. Obese subjects have an increased morbidity and mortality, decreased quality of life and a major risk of developing pathologies such as diabetes mellitus, insulin resistance and cardiovascular disease. Obesity is a complex disease characterised by an increase in body fat mass resulting from an imbalance between energy intake and expenditure.

View Article and Find Full Text PDF

Our previous results demonstrated that tungstate decreased weight gain and adiposity in obese rats through increased thermogenesis and lipid oxidation, suggesting that brown adipose tissue was one of the targets of its antiobesity effect. To identify potential targets of tungstate, we used DIGE to compare brown adipose tissue protein extracts from the following experimental groups: untreated lean, tungstate-treated lean, untreated obese, and tungstate-treated obese rats. To distinguish direct targets of tungstate action from those that are secondary to body weight loss, we also included in the analysis an additional group consisting of obese rats that lose weight by caloric restriction.

View Article and Find Full Text PDF

Oral administration of sodium tungstate is an effective treatment for diabetes in animal models. Several lines of evidence indicate the pancreatic beta cell as one of the targets of tungstate action. Here, we examined the molecular mechanism by which this compound exerts its effects on the beta cell line MIN6.

View Article and Find Full Text PDF

Adipose tissue plays an active role in the development of obesity, and thus characterization of the molecular changes related to obesity in this tissue is a priority. Recently, we identified tungstate as a potent body weight reducing agent in obese animals, adipose tissue being one of the targets of its action. In this study a proteomics approach combining 2-DE and MS was used to identify proteins associated with obesity and targets of tungstate in white adipose tissue.

View Article and Find Full Text PDF

The increasing worldwide incidence of obesity and the limitations of current treatments raise the need for finding novel therapeutic approaches to treat this disease. The purpose of the current study was first to investigate the effects of tungstate on body weight and insulin sensitivity in a rat model of diet-induced obesity. Second, we aimed to gain insight into the molecular mechanisms underlying its action.

View Article and Find Full Text PDF

A role for cytokine regulated proteins in epithelial cells has been suggested in the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to identify such cytokine regulated targets using a proteomic functional approach. Protein patterns from (35)S-radiolabeled homogenates of cultured colon epithelial cells were compared before and after exposure to interferon-gamma, interleukin-1beta and interleukin-6.

View Article and Find Full Text PDF