Publications by authors named "Silvia B V Ramos"

More than 4,000 single nucleotide polymorphisms (SNP) variants have been identified in the human gene, however only a few have been studied in the context of protein function. The tandem zinc finger domain of ZFP36L2, an RNA binding protein, is the functional domain that binds to its target mRNAs. This protein/RNA interaction triggers mRNA degradation, controlling gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • Some regular body processes that help control inflammation don't work right in diseases like psoriasis, which means the inflammation can stay for a long time.
  • Scientists studied skin cells from people with psoriasis and found that there are special genes that can help reduce inflammation, but these genes don't work well in inflamed skin.
  • When they turned off two important genes in these skin cells, they saw a rise in inflammatory markers, showing how these genes are important for keeping inflammation in check, and treatments targeting inflammation might not fix everything when stopped.
View Article and Find Full Text PDF

Zinc finger protein 36 like 2 (ZFP36L2) is an RNA-binding protein that destabilizes transcripts containing adenine-uridine rich elements (AREs). The overlap between ZFP36L2 targets in different tissues is minimal, suggesting that ZFP36L2-targeting is highly tissue specific. We developed a novel Zfp36l2-lacking mouse model (L2-fKO) to identify factors governing this tissue specificity.

View Article and Find Full Text PDF

α1-anti-trypsin (A1AT), encoded by SERPINA1, is a neutrophil elastase inhibitor that controls the inflammatory response in the lung. Severe A1AT deficiency increases risk for Chronic Obstructive Pulmonary Disease (COPD), however, the role of A1AT in COPD in non-deficient individuals is not well known. We identify a 2.

View Article and Find Full Text PDF

The zinc finger protein 36-like 2, ZFP36L2, is a member of a small family of RNA-binding proteins composed by ZFP36 (also known as tristetraprolin, TTP), ZFP36L1 and ZFP36L2 in humans, with corresponding murine orthologs. These proteins bind to adenine uridine-rich element (ARE) in the 3'untranslated region of target messenger RNA and stimulate target degradation. ZFP36 functions as an anti-inflammatory modulator in murine models of inflammatory diseases by down-regulating the production of inflammatory cytokines such as tumor necrosis factor-α.

View Article and Find Full Text PDF

Designing novel RNA topologies is a challenge, with important therapeutic and industrial applications. We describe a computational pipeline for design of novel RNA topologies based on our coarse-grained RNA-As-Graphs (RAG) framework. RAG represents RNA structures as tree graphs and describes RNA secondary (2D) structure topologies (currently up to 13 vertices, ≈260 nucleotides).

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) affects over 65 million individuals worldwide, where α-1-antitrypsin deficiency is a major genetic cause of the disease. The α-1-antitrypsin gene, , expresses an exceptional number of mRNA isoforms generated entirely by alternative splicing in the 5'-untranslated region (5'-UTR). Although all mRNAs encode exactly the same protein, expression levels of the individual mRNAs vary substantially in different human tissues.

View Article and Find Full Text PDF

ZFP36L2 (L2) destabilizes AU-rich element (ARE)-containing transcripts and has been implicated in female fertility. We have shown that only one of three putative AREs within the 3' UTR of murine luteinizing hormone receptor mRNA, ARE2197 (UAUUUAU), is capable of interacting with L2. To assess whether structural elements of ARE2197 could explain this unique binding ability, we performed whole-transcript SHAPE-MaP (selective 2' hydroxyl acylation by primer extension-mutational profiling) of the full-length mLHR mRNA.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are highly stable, covalently closed RNAs that are regulated in a spatiotemporal manner and whose functions are largely unknown. These molecules have the potential to be incorporated into engineered systems with broad technological implications. Here we describe a switch for inducing back-splicing of an engineered circRNA that relies on the CRISPR endoribonuclease, Csy4, as an activator of circularization.

View Article and Find Full Text PDF

RNA conformation plays a significant role in stability, ligand binding, transcription, and translation. Single nucleotide variants (SNVs) have the potential to disrupt specific structural elements because RNA folds in a sequence-specific manner. A riboSNitch is an element of RNA structure with a specific function that is disrupted by an SNV or a single nucleotide polymorphism (SNP; or polymorphism; SNVs occur with low frequency in the population, <1%).

View Article and Find Full Text PDF

ZFP36L2 protein destabilizes AU-rich element-containing transcripts and has been implicated in female fertility. In the C57BL/6NTac mouse, a mutation in Zfp36l2 that results in the decreased expression of a form of ZFP36L2 in which the 29 N-terminal amino acid residues have been deleted, ΔN-ZFP36L2, leads to fertilized eggs that arrest at the two-cell stage. Interestingly, homozygous ΔN-Zfp36l2 females in the C57BL/6NTac strain release 40% fewer eggs than the WT littermates (Ramos et al.

View Article and Find Full Text PDF

Three studies have characterized the full complement of RNA folding in cells. They find large numbers of secondary structures in RNA, some of which may have functional consequences for the cell.

View Article and Find Full Text PDF

The zinc finger protein 36-like 2, Zfp36l2, has been implicated in female mouse infertility, because an amino-terminal truncation mutation (ΔN-Zfp36l2) leads to two-cell stage arrest of embryos derived from the homozygous mutant female gamete. Zfp36l2 is a member of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins that can bind to transcripts containing AU-rich elements (ARE), resulting in deadenylation and destabilization of these transcripts. I show here that the mouse Zfp36l2 is composed of two exons and a single intron, encoding a polypeptide of 484 amino acids.

View Article and Find Full Text PDF

Members of the tristetraprolin family of CCCH tandem zinc finger proteins bind to AU-rich elements in certain cellular mRNAs, leading to their deadenylation and destabilization. Studies in knock-out mice demonstrated roles for three of the family members, tristetraprolin, ZFP36L1, and ZFP36L2, in inflammation, chorioallantoic fusion, and early embryonic development, respectively. However, little is known about a recently discovered placenta-specific tristetraprolin family member, ZFP36L3.

View Article and Find Full Text PDF

Members of the tristetraprolin (TTP) family of CCCH tandem zinc finger (TZF) proteins can bind directly to AU-rich elements (ARE) in mRNA, causing deadenylation and destabilization of the transcripts to which they bind. We describe here a novel fourth mammalian member of the TTP protein family, designated ZFP36L3, which could also bind directly to ARE-containing RNAs and could promote the deadenylation and degradation of ARE-containing target RNAs. Zfp36l3 transcript expression was detected only in placenta and extraembryonic tissues in the mouse.

View Article and Find Full Text PDF

The CCCH tandem zinc finger protein, Zfp36l2, like its better-known relative tristetraprolin (TTP), can decrease the stability of AU-rich element-containing transcripts in cell transfection studies; however, its physiological importance is unknown. We disrupted Zfp36l2 in mice, resulting in decreased expression of a truncated protein in which the N-terminal 29 amino acids had been deleted (DeltaN-Zfp36l2). Mice derived from different clones of ES cells exhibited complete female infertility, despite evidence from embryo and ovary transplantation experiments that they could gestate and rear wild-type young.

View Article and Find Full Text PDF

To evaluate the membrane expression of histocompatibility (HLA) class I (A-C) molecules on lymphomononuclear cells involved in the pathogenesis of type 1 diabetes, we studied 20 newly diagnosed Brazilian patients and 20 matched controls. The coexpression of HLA and cluster of differentiation (CD) molecules was evaluated by flow cytometry. Compared to controls, patients presented increased fluorescence intensity of HLA class I molecules on CD3+, CD4+ and CD8+ cells.

View Article and Find Full Text PDF

Members of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins can bind directly to certain types of AU-rich elements (AREs) in mRNA. Experiments in TTP-deficient mice have shown that TTP is involved in the physiological destabilization of at least two cytokine mRNAs, those encoding tumor necrosis factor alpha and granulocyte-macrophage colony-stimulating factor. The two other known mammalian members of the TTP family, CMG1 and TIS11D, also contain ARE-binding CCCH tandem zinc finger domains and can also destabilize ARE-containing mRNAs.

View Article and Find Full Text PDF