Publications by authors named "Silvia Alvarez Blanco"

The textile industry is one of the largest water consumers, and, as a result of its activity, it generates tons of wastewater. In this research, forward osmosis has been employed to tackle the critical need of treating textile wastewater. The HFFO2 membrane (Aquaporin) was used to process large volumes of real cotton dyeing wastewater, wool dyeing wastewater, and several types of textile end-of-pipe wastewater.

View Article and Find Full Text PDF

Phenolic compounds from a hydroalcoholic extract of wet olive pomace were purified and concentrated by an integrated membrane process in organic media. First, UF010104 (Solsep BV) and UP005 (Microdyn Nadir) membranes were tested to be implemented in the ultrafiltration stage, with the aim of purifying the extract and obtaining a permeate enriched in phenolic compounds. Despite the high flux observed with the UF010104 membrane (20.

View Article and Find Full Text PDF

The textile industry generates large volumes of water characterized mainly by an intense color coming from dyes that are difficult to process due to their synthetic base and the presence of aromatic components. Due to the stricter regulation on the discharge of these effluents, in order to reduce dye waste before discharge into natural channels, alternatives are being sought to manage this wastewater. In this work, the concentration of dyes in simulated wastewater from the textile industry was studied by forward osmosis (with a cellulose triacetate CTA membrane), with the aim of concentrating the dye for its future recovery and reincorporation into the production process.

View Article and Find Full Text PDF

Currently, understanding the dynamics of the interaction between the agents in a process is one of the most important factors regarding its operation and design. Membrane processes for industrial wastewater management are not strangers to this topic. One such example is the concentration of compounds with high added value, such as the phenolic compounds present in olive mill wastewater (OMW).

View Article and Find Full Text PDF

Despite the environmental concerns raised every year by the generation of high volumes of wet olive pomace, it contains valuable phenolic compounds that are essential for the valorization of this by-product. In this work, an integrated process to recover phenolic compounds from wet olive pomace is proposed. It consists of ultrasound-assisted solid-liquid extraction, followed by ultrafiltration and nanofiltration.

View Article and Find Full Text PDF

Management of wastewater is a major challenge nowadays, due to increasing water demand, growing population and more stringent regulations on water quality. Wastewaters from food conservation are especially difficult to treat, since they have high salinity and high organic matter concentration. The aim of this work is the treatment of the effluent from a table olive fermentation process (FTOP) with the aim of reusing it once the organic matter is separated.

View Article and Find Full Text PDF

Microfiltration applied in the dairy industry for bacteria removal is an important technology for extending the shelf life of milk while maintaining or even improving its organoleptic and nutritional properties. This article reviews the evolution of this technique over recent years and the advances currently being made in the field. The cited literature indicates the strategies used to overcome the main drawbacks of this type of operation, the most common operating conditions employed and the reduction degree of bacteria obtained.

View Article and Find Full Text PDF