Blending carbon particles (CPs) and nanoscale bioactive cerium dioxide is a promising approach for designing composites for biomedical applications, combining the sorption and antioxidant potentials of each individual component. To address this issue, it is crucial to assess the correlation between the components' ratio, physicochemical parameters, and biofunctionality of the composites. Thus, the current research was aimed at fabricating C@CeO composites with different molar ratios and the examination of how the parameters of the composites affect their bioactivity.
View Article and Find Full Text PDFFluorination is one of the most efficient and universal strategies to increase the hydrophobicity of materials and consequently their water stability. Zeolitic-imidazolate frameworks (ZIFs), which have limited stability in aqueous media and even lower stability when synthesized on a nanometric scale, can greatly benefit from the incorporation of fluorine atoms, not only to improve their stability but also to provide additional properties. Herein, we report the preparation of two different fluorinated ZIFs through a simple and scalable approach by using mixed ligands [2-methylimidazole, as a common ligand, and 4-(4-fluorophenyl)-1-imidazole ( linker) or 2-methyl-5-(trifluoromethyl)-1-imidazole ( linker) as a dopant], demonstrating the high versatility of the synthetic method developed to incorporate different fluorine-containing imidazole-based ligands.
View Article and Find Full Text PDFThe transformation of CO into value-added products from an impure CO stream, such as flue gas or exhaust gas, directly contributes to the principle of carbon capture and utilization (CCU). Thus, we have developed a robust iron-based heterogeneous photocatalyst that can convert the exhaust gas from the car into CO with an exceptional production rate of 145 μmol g h. We characterized this photocatalyst by PXRD, XPS, ssNMR, EXAFS, XANES, HR-TEM, and further provided mechanistic experiments, and multi-scale/level computational studies.
View Article and Find Full Text PDFThis study investigates the origin of low-pressure hysteresis (LPH) in the adsorption and desorption of three different probe molecules: carbon dioxide, nitrogen, and argon, across various adsorption temperatures (from cryogenic to room temperature), and within five different carbon materials: synthetic carbons (pristine and one post-synthetically oxidized) and natural coal. Significant attention is dedicated to elucidating LPH in oxidized samples outgassed at various temperatures (120-350 °C). Experimental results show that insufficient outgassing temperature can lead to unreliable data due to artificial LPH and significantly underestimated textural properties, primarily caused by porosity blockage from substances like moisture.
View Article and Find Full Text PDFCarbon-encapsulated iron oxide nanoparticles (CE-nFe) have been obtained from an industrial waste (oil mill wastewater-OMW, as a carbonaceous source), and using iron sulfate as metallic precursor. In an initial step, the hydrochar obtained has been thermally activated under an inert atmosphere at three different temperatures (600 °C, 800 °C and 1000 °C). The thermal treatment promotes the development of core-shell nanoparticles, with an inner core of α-Fe/FeO, surrounded by a well-defined graphite shell.
View Article and Find Full Text PDFA series of TiO - based photocatalysts have been prepared by the incorporation of 10 wt% of various carbon-based nanomaterials as modifying agents to titania. More specifically, commercial TiO P25 was modified through a wet impregnation approach with methanol with four different carbon nanostructures: single-walled carbon nanotubes (SWCNTs), partially reduced graphene oxide (prGO), graphite (GI), and graphitic carbon nitride (gCN). Characterization results (XPS and Raman) anticipate the occurrence of important interfacial phenomena, preferentially for samples TiO/SWCNT and TiO/prGO, with a binding energy displacement in the Ti 2p contribution of 1.
View Article and Find Full Text PDFThis study evaluates the removal of several dyes with different charge properties, i.e., anionic (Acid Red 88), cationic (Basic Red 13), and neutral (Basic Red 5) using transition metal-doped TiO supported on a high-surface-area activated carbon.
View Article and Find Full Text PDFHydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available.
View Article and Find Full Text PDFWe report the first experimental evidence for rapid formation of hydrogen clathrates under mild pressure and temperature conditions within the cavities of a zirconium-metalloporphyrin framework, specifically PCN-222. PCN-222 has been selected for its 1D mesoporous channels, high water-stability, and proper hydrophilic behavior. Firstly, we optimize a microwave (MW)-assisted method for the synthesis of nanosized PCN-222 particles with precise structure control (exceptional homogeneity in morphology and crystalline phase purity), taking advantage of MW in terms of rapid/homogeneous heating, time and energy savings, as well as potential scalability of the synthetic method.
View Article and Find Full Text PDFIn this work, we have fabricated an aryl amino-substituted graphitic carbon nitride (g-CN) catalyst with atomically dispersed Mn capable of generating hydrogen peroxide (HO) directly from seawater. This new catalyst exhibited excellent reactivity, obtaining up to 2230 μM HO in 7 h from alkaline water and up to 1800 μM from seawater under identical conditions. More importantly, the catalyst was quickly recovered for subsequent reuse without appreciable loss in performance.
View Article and Find Full Text PDFSpace cooling and heating, ventilation, and air conditioning (HVAC) accounts for roughly 10% of global electricity use and are responsible for ca. 1.13 gigatonnes of CO emissions annually.
View Article and Find Full Text PDFA series of UiO-66 materials with different functional groups (-H, -NH, and -NO) have been evaluated for the adsorption and release of a common ocular drug such as brimonidine tartrate. UiO-66 samples were synthesized under solvothermal conditions and activated by solvent exchange with ethanol. Experimental results suggest that the incorporation of surface functionalities gives rise to the development of structural defects (missing linker defects) but without altering the basic topology of the UiO-66 framework.
View Article and Find Full Text PDFClathrate hydrates are crystalline solids characterized by their ability to accommodate large quantities of guest molecules. Although CH and CO are the traditional guests found in natural systems, incorporating smaller molecules (e.g.
View Article and Find Full Text PDFWe are currently witnessing the dawn of hydrogen (H) economy, where H will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel adsorption onto porous materials. Metal-organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H storage densities on both a volumetric and gravimetric basis.
View Article and Find Full Text PDFThe selectivity of 1-butene hydrogenation/isomerization on Pd catalysts is known to be particle size dependent. Here we show that combining well-defined model catalysts, atmospheric pressure reaction kinetics, DFT calculations and microkinetic modeling enables to rationalize the particle size effect based on the abundance and the specific properties of the contributing surface facets.
View Article and Find Full Text PDFThe catalytic reduction of nitrites over Pt-In catalysts supported on activated carbon has been studied in a semi-batch reactor, at room temperature and atmospheric pressure, and using hydrogen as the reducing agent. The influence of the indium content on the activity and selectivity was evaluated. Monometallic Pt catalysts are very active for nitrite reduction, but the addition of up to 1 wt% of indium significantly increases the nitrogen selectivity from 0 to 96%.
View Article and Find Full Text PDFCarbon dioxide (CO) is both a primary contributor to global warming and a major industrial impurity. Traditional approaches to carbon capture involve corrosive and energy-intensive processes such as liquid amine absorption. Although adsorptive separation has long been a promising alternative to traditional processes, up to this point there has been a lack of appropriate adsorbents capable of capturing CO whilst maintaining low regeneration energies.
View Article and Find Full Text PDFMolecular separation of carbon dioxide (CO) and methane (CH) is of growing interest for biogas upgrading, carbon capture and utilization, methane synthesis and for purification of natural gas. Here, we report a new zeolitic-imidazolate framework (ZIF), coined COK-17, with exceptionally high affinity for the adsorption of CO by London dispersion forces, mediated by chlorine substituents of the imidazolate linkers. COK-17 is a new type of flexible zeolitic-imidazolate framework Zn(4,5-dichloroimidazolate) with the SOD framework topology.
View Article and Find Full Text PDFThe structural deterioration of archetypical, well-faceted metal-organic frameworks (MOFs) has been evaluated upon exposure to an acidic environment (HS). Experimental results show that the structural damage highly depends on the nature of the hybrid network (e.g.
View Article and Find Full Text PDFPorous metal-organic frameworks (MOFs) capable of storing a relatively high amount of dry methane (CH) in the adsorbed phase are largely explored; however, solid CH storage in confined pores of MOFs in the form of hydrates is yet to be discovered. Here we report a rational approach to form CH hydrates by taking advantage of the optimal pore confinement in relatively narrow cavities of hydrolytically stable MOFs. Unprecedentedly, we were able to isolate methane hydrate (MH) nanocrystals with an sI structure encapsulated inside MOF pores with an optimal cavity dimension.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2020
Novel MOF-based polymer nanocomposite films were successfully prepared using Zr-based UiO-67 as a metal-organic framework (MOF) and polyurethane (PU) as a polymeric matrix. Synchrotron X-ray powder diffraction (SXRPD) analysis confirms the improved stability of the UiO-67 embedded nanocrystals, and scanning electron microscopy images confirm their homogeneous distribution (average crystal size ∼100-200 nm) within the 50 μm thick film. Accessibility to the inner porous structure of the embedded MOFs was completely suppressed for N at cryogenic temperatures.
View Article and Find Full Text PDFMitochondria play a key role in oncogenesis and constitute one of the most important targets for cancer treatments. Although the most effective way to deliver drugs to mitochondria is by covalently linking them to a lipophilic cation, the delivery of free drugs still constitutes a critical bottleneck. Herein, we report the design of a mitochondria-targeted metal-organic framework (MOF) that greatly increases the efficacy of a model cancer drug, reducing the required dose to less than 1% compared to the free drug and ca.
View Article and Find Full Text PDFMagnetic dispersive solid-phase extraction (MDSPE) is combined with electrochemical detection by using a screen-printed carbon electrode modified with gold nanoparticles to determine lead(II). A zeolite-based magnetic composite was used as sorbent during sample preparation, thus combining the unique properties of zeolites as sorbent materials with the remarkable advantages provided by magnetic materials. Three different zeolite-based magnetic composites were initially investigated and characterized.
View Article and Find Full Text PDFAlthough traditionally high-surface area carbon materials have been considered as rigid structures with a disordered three dimensional (3D) network of graphite microdomains associated with a limited electrical conductivity (highly depending on the porous structure and surface chemistry), here we show that this is not the case for activated carbon materials prepared using harsh activation conditions (e.g., KOH activation).
View Article and Find Full Text PDF