Effective thermal management is crucial for the performance and longevity of devices such as computer chips and batteries. A fundamental challenge in this field is accurately determining temperature distributions, which are often limited by incomplete observations. We introduce a neural-network-based approach to overcome these challenges.
View Article and Find Full Text PDFA system for approximate number discrimination has been shown to arise in at least two types of hierarchical neural network models-a generative Deep Belief Network (DBN) and a Hierarchical Convolutional Neural Network (HCNN) trained to classify natural objects. Here, we investigate whether the same two network architectures can learn to recognise exact numerosity. A clear difference in performance could be traced to the specificity of the unit responses that emerged in the last hidden layer of each network.
View Article and Find Full Text PDF