Nicotinamide riboside, the most recently discovered form of vitamin B3, and its phosphorylated form nicotinamide mononucleotide, have been shown to be potent supplements boosting intracellular nicotinamide adenine dinucleotide (NAD) levels, thus preventing or ameliorating metabolic and mitochondrial diseases in mouse models. Here we report for the first time on the simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and NAD in milk by means of a fluorometric, enzyme-coupled assay. Application of this assay to milk from different species revealed that the three vitamers were present in human and donkey milk, while being selectively distributed in the other milks.
View Article and Find Full Text PDFIn addition to its role as a redox coenzyme, NAD is a substrate of various enzymes that split the molecule to either catalyze covalent modifications of target proteins or convert NAD into biologically active metabolites. The coenzyme bioavailability may be significantly affected by these reactions, with ensuing major impact on energy metabolism, cell survival, and aging. Moreover, through the activity of the NAD-dependent deacetylating sirtuins, NAD behaves as a beacon molecule that reports the cell metabolic state, and accordingly modulates transcriptional responses and metabolic adaptations.
View Article and Find Full Text PDFNAD plays essential redox and non-redox roles in cell biology. In mammals, its de novo and recycling biosynthetic pathways encompass two independent branches, the "amidated" and "deamidated" routes. Here we focused on the indispensable enzymes gating these two routes, i.
View Article and Find Full Text PDFThe redox coenzyme NAD(+) is also a rate-limiting co-substrate for several enzymes that consume the molecule, thus rendering its continuous re-synthesis indispensable. NAD(+) biosynthesis has emerged as a therapeutic target due to the relevance of NAD(+) -consuming reactions in complex intracellular signaling networks whose alteration leads to many neurologic and metabolic disorders. Distinct metabolic routes, starting from various precursors, are known to support NAD(+) biosynthesis with tissue/cell-specific efficiencies, probably reflecting differential expression of the corresponding rate-limiting enzymes, i.
View Article and Find Full Text PDFIn mammals, NAD represents a nodal point for metabolic regulation, and its availability is critical to genome stability. Several NAD-consuming enzymes are induced in various stress conditions and the consequent NAD decline is generally accompanied by the activation of NAD biosynthetic pathways to guarantee NAD homeostasis. In the bacterial world a similar scenario has only recently begun to surface.
View Article and Find Full Text PDFNMN deamidase (PncC) is a bacterial enzyme involved in NAD biosynthesis. We have previously demonstrated that PncC is structurally distinct from other known amidohydrolases. Here, we extended PncC characterization by mutating all potential catalytic residues and assessing their individual roles in catalysis through kinetic analyses.
View Article and Find Full Text PDFWe have recently identified the enzyme NMN deamidase (PncC), which plays a key role in the regeneration of NAD in bacteria by recycling back to the coenzyme the pyridine by-products of its non redox consumption. In several bacterial species, PncC is fused to a COG1058 domain of unknown function, highly conserved and widely distributed in all living organisms. Here, we demonstrate that the PncC-fused domain is endowed with a novel Co(+2)- and K(+)-dependent ADP-ribose pyrophosphatase activity, and discuss the functional connection of such an activity with NAD recycling.
View Article and Find Full Text PDFA novel assay procedure has been developed to allow simultaneous activity discrimination in crude tissue extracts of the three known mammalian nicotinamide mononucleotide adenylyltransferase (NMNAT, EC 2.7.7.
View Article and Find Full Text PDFThe pyridine nucleotide cycle is a network of salvage and recycling routes maintaining homeostasis of NAD(P) cofactor pool in the cell. Nicotinamide mononucleotide (NMN) deamidase (EC 3.5.
View Article and Find Full Text PDFThe PcF Toxin Family (Pfam 09461) includes the characterized phytotoxic protein PcF from Phytophthora cactorum, as well as several predicted protein effectors from other Phytophthora species recently identified by comparative genomics. Here we provide first evidence that such 'putatives', recombinantly expressed in bacteria and purified to homogeneity, similarly to PcF, can trigger defense-related responses on tomato, that is leaf withering and phenylalanine ammonia lyase induction, although with various degrees of effectiveness. In addition, structural prediction by computer-aided homology modeling and subsequent structural/functional comparison after rational engineering of the disulfide-structured protein fold by site-directed mutagenesis, highlighted the surface-exposed conserved amino acid stretch SK(E/C)C as a possible structural determinant responsible for the differential phytotoxicity within this family of cognate protein effectors.
View Article and Find Full Text PDFNicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes the formation of NAD by means of nucleophilic attack by 5'-phosphoryl of NMN on the α-phosphoryl group of ATP. Humans possess three NMNAT isozymes (NMNAT1, NMNAT2, and NMNAT3) that differ in size and sequence, gene expression pattern, subcellular localization, oligomeric state and catalytic properties. Of these, NMNAT2, the least abundant isozyme, is the only one whose much-needed crystal structure has not been solved as yet.
View Article and Find Full Text PDFThe PcF protein from Phytophthora cactorum is the first member of the "PcF toxin family" from the plant pathogens Phytophthora spp. It is able to induce withering in tomato and strawberry leaves. The lack of sequence similarity with other proteins hampers the identification of the molecular mechanisms responsible for its toxicity.
View Article and Find Full Text PDFMounting evidence attests to the paramount importance of the non-redox NAD functions. Indeed, NAD homeostasis is related to the free radicals-mediated production of reactive oxygen species responsible for irreversible cellular damage in infectious disease, diabetes, inflammatory syndromes, neurodegeneration and cancer. Because the cellular redox status depends on both the absolute concentration of pyridine dinucleotides and their respective ratios of oxidized and reduced forms (i.
View Article and Find Full Text PDFSeveral oat brans (crunchy oat bran, oat bran alone, and oat breakfast cereal) and wheat brans (wheat bran alone, wheat bran powder, wheat bran with malt flavor, bran breakfast cereal, tablet of bran, and tablet of bran with cellulose) used as dietary fiber supplements by consumers were evaluated as alternative antioxidant sources (i) in the normal human consumer, preventing disease and promoting health, and (ii) in food processing, preserving oxidative alterations. Products containing wheat bran exhibited higher peroxyl radical scavenging effectiveness than those with oat bran. Wheat bran powder was the best hydroxyl radical (OH*) scavenger.
View Article and Find Full Text PDF