Wild soybean species ( Siebold & Zucc.) comprise a unique resource to widen the genetic base of cultivated soybean [ (L.) Merr.
View Article and Find Full Text PDFDeveloping crops with better root systems is a promising strategy to ensure productivity in both optimum and stress environments. Root system architectural traits in 397 soybean accessions were characterized and a high-density single nucleotide polymorphisms (SNPs)-based genome-wide association study was performed to identify the underlying genes associated with root structure. SNPs associated with root architectural traits specific to landraces and elite germplasm pools were detected.
View Article and Find Full Text PDFWe tested the hypothesis that increasing the number of metaxylem vessels would enhance the efficiency of water uptake in soybean (Glycine max) and decrease the yield gap in water-limited environments. A panel of 41 soybean accessions was evaluated in greenhouse, rainout shelter, and rain-fed field environments. The metaxylem number influenced the internal capture of CO2 and improved stomatal conductance, enhancing water uptake/use in soybeans exposed to stress during the reproductive stage.
View Article and Find Full Text PDFSoybean, one of the most important crops worldwide, is severely affected by abiotic stress. Drought and flooding are the major abiotic stresses impacting soybean yield. In this regard, understanding water uptake by plants, its utilization and transport has great importance.
View Article and Find Full Text PDFDrought and flooding are two major causes of severe yield loss in soybean worldwide. A lack of knowledge of the molecular mechanisms involved in drought and flood stress has been a limiting factor for the effective management of soybeans; therefore, it is imperative to assess the expression of genes involved in response to flood and drought stress. In this study, differentially expressed genes (DEGs) under drought and flooding conditions were investigated using Illumina RNA-Seq transcriptome profiling.
View Article and Find Full Text PDFCircadian clocks are a great evolutionary innovation and provide competitive advantage during the day/night cycle and under changing environmental conditions. The circadian clock mediates expression of a large proportion of genes in plants, achieving a harmonious relationship between energy metabolism, photosynthesis, and biotic and abiotic stress responses. Here it is shown that multiple paralogues of clock genes are present in soybean (Glycine max) and mediate flooding and drought responses.
View Article and Find Full Text PDFBackground: Drought stress is a major limitation to rainfed rice production and yield stability. Identifying yield-associated quantitative trait loci (QTLs) that are consistent under drought stress predominant in target production environments, as well as across different genetic backgrounds, will help to develop high-yielding rice cultivars suitable for water-limited environments through marker-assisted breeding (MAB). Considerable progress has been made in mapping QTLs for drought resistance traits in rice; however, few have been successfully used in MAB.
View Article and Find Full Text PDFLimited information is available for soybean root traits and their plasticity under drought stress. To date, no studies have focused on examining diverse soybean germplasm for regulation of shoot and root response under water limited conditions across varying soil types. In this study, 17 genetically diverse soybean germplasm lines were selected to study root response to water limited conditions in clay (trial 1) and sandy soil (trial 2) in two target environments.
View Article and Find Full Text PDFBackground: Root system architecture is important for water acquisition and nutrient acquisition for all crops. In soybean breeding programs, wild soybean alleles have been used successfully to enhance yield and seed composition traits, but have never been investigated to improve root system architecture. Therefore, in this study, high-density single-feature polymorphic markers and simple sequence repeats were used to map quantitative trait loci (QTLs) governing root system architecture in an inter-specific soybean mapping population developed from a cross between Glycine max and Glycine soja.
View Article and Find Full Text PDFCultivated soybean (Glycine max L.) cv. Dunbar (PI 552538) and wild G.
View Article and Find Full Text PDF