Publications by authors named "Silvano de Franceschi"

Gatemons are superconducting qubits resembling transmons, with a gate-tunable semiconducting weak link as the Josephson element. Here, we report a gatemon device featuring an aluminum microwave circuit on a Ge/SiGe heterostructure embedding a Ge quantum well. Owing to the superconducting proximity effect, the high-mobility two-dimensional hole gas confined in this well provides a gate-tunable superconducting weak link between two Al contacts.

View Article and Find Full Text PDF

Spins in semiconductor quantum dots constitute a promising platform for scalable quantum information processing. Coupling them strongly to the photonic modes of superconducting microwave resonators would enable fast non-demolition readout and long-range, on-chip connectivity, well beyond nearest-neighbour quantum interactions. Here we demonstrate strong coupling between a microwave photon in a superconducting resonator and a hole spin in a silicon-based double quantum dot issued from a foundry-compatible metal-oxide-semiconductor fabrication process.

View Article and Find Full Text PDF

The engineering of a compact qubit unit cell that embeds all quantum functionalities is mandatory for large-scale integration. In addition, these functionalities should present the lowest error rate possible to successfully implement quantum error correction protocols. Electron spins in silicon quantum dots are particularly promising because of their high control fidelity and their potential compatibility with complementary metal-oxide-semiconductor industrial platforms.

View Article and Find Full Text PDF

Hybrid superconductor-semiconductor structures attract increasing attention owing to a variety of potential applications in quantum computing devices. They can serve the realization of topological superconducting systems as well as gate-tunable superconducting quantum bits. Here, we combine a SiGe/Ge/SiGe quantum-well heterostructure hosting high-mobility two-dimensional holes and aluminum superconducting leads to realize prototypical hybrid devices, such as Josephson field-effect transistors (JoFETs) and superconducting quantum interference devices (SQUIDs).

View Article and Find Full Text PDF

In a semiconductor spin qubit with sizable spin-orbit coupling, coherent spin rotations can be driven by a resonant gate-voltage modulation. Recently, we have exploited this opportunity in the experimental demonstration of a hole spin qubit in a silicon device. Here we investigate the underlying physical mechanisms by measuring the full angular dependence of the Rabi frequency, as well as the gate-voltage dependence and anisotropy of the hole g factor.

View Article and Find Full Text PDF

We report an experimental study of one-dimensional (1D) electronic transport in an InSb semiconducting nanowire. A total of three bottom gates are used to locally deplete the nanowire, creating a ballistic quantum point contact with only a few conducting channels. In a magnetic field, the Zeeman splitting of the corresponding 1D sub-bands is revealed by the emergence of conductance plateaus at multiples of e/h, yet we find a quantized conductance pattern largely dependent on the configuration of voltages applied to the bottom gates.

View Article and Find Full Text PDF

We report on dual-gate reflectometry in a metal-oxide-semiconductor double-gate silicon transistor operating at low temperature as a double quantum dot device. The reflectometry setup consists of two radio frequency resonators respectively connected to the two gate electrodes. By simultaneously measuring their dispersive responses, we obtain the complete charge stability diagram of the device.

View Article and Find Full Text PDF

We investigate the gate-induced onset of few-electron regime through the undoped channel of a silicon nanowire field-effect transistor. By combining low-temperature transport measurements and self-consistent calculations, we reveal the formation of one-dimensional conduction modes localized at the two upper edges of the channel. Charge traps in the gate dielectric cause electron localization along these edge modes, creating elongated quantum dots with characteristic lengths of ∼10 nm.

View Article and Find Full Text PDF

The physics and operating principles of hybrid superconductor-semiconductor devices rest ultimately on the magnetic properties of their elementary subgap excitations, usually called Andreev levels. Here we report a direct measurement of the Zeeman effect on the Andreev levels of a semiconductor quantum dot with large electron g-factor, strongly coupled to a conventional superconductor with a large critical magnetic field. This material combination allows spin degeneracy to be lifted without destroying superconductivity.

View Article and Find Full Text PDF

We studied the low-energy states of spin-1/2 quantum dots defined in InAs/InP nanowires and coupled to aluminum superconducting leads. By varying the superconducting gap Δ with a magnetic field B we investigated the transition from strong coupling Δ << T(K) to weak-coupling Δ >> T(K), where T(K) is the Kondo temperature. Below the critical field, we observe a persisting zero-bias Kondo resonance that vanishes only for low B or higher temperatures, leaving the room to more robust subgap structures at bias voltages between Δ and 2Δ.

View Article and Find Full Text PDF

We report on the electronic transport properties of multiple-gate devices fabricated from undoped silicon nanowires. Understanding and control of the relevant transport mechanisms was achieved by means of local electrostatic gating and temperature-dependent measurements. The roles of the source/drain contacts and of the silicon channel could be independently evaluated and tuned.

View Article and Find Full Text PDF

We report on a technique enabling electrical control of the contact silicidation process in silicon nanowire devices. Undoped silicon nanowires were contacted by pairs of nickel electrodes, and each contact was selectively silicided by means of the Joule effect. By a real-time monitoring of the nanowire electrical resistance during the contact silicidation process we were able to fabricate nickel-silicide/silicon/nickel-silicide devices with controlled silicon channel length down to 8 nm.

View Article and Find Full Text PDF

Advances in nanofabrication techniques have made it possible to make devices in which superconducting electrodes are connected to non-superconducting nanostructures such as quantum dots. The properties of these hybrid devices result from a combination of a macroscopic quantum phenomenon involving large numbers of electrons (superconductivity) and the ability to control single electrons, offered by quantum dots. Here we review research into electron transport and other fundamental processes that have been studied in these devices.

View Article and Find Full Text PDF

Semiconductor nanowires provide promising low-dimensional systems for the study of quantum transport phenomena in combination with superconductivity. Here we investigate the competition between the Coulomb blockade effect, Andreev reflection, and quantum interference, in InAs and InP nanowires connected to aluminum-based superconducting electrodes. We compare three limiting cases depending on the tunnel coupling strength and the characteristic Coulomb interaction energy.

View Article and Find Full Text PDF

GaAs nanowires have been grown on SiO2 and GaAs by molecular beam epitaxy using manganese as growth catalyst. Transmission electron microscopy shows that the wires have a wurtzite-type lattice and that alpha-Mn particles are found at the free end of the wires. X-ray absorption fine structure measurements reveal the presence of a significant fraction of Mn-As bonds, suggesting Mn diffusion and incorporation during wire growth.

View Article and Find Full Text PDF

When two superconductors are electrically connected by a weak link--such as a tunnel barrier--a zero-resistance supercurrent can flow. This supercurrent is carried by Cooper pairs of electrons with a combined charge of twice the elementary charge, e. The 2e charge quantum is clearly visible in the height of voltage steps in Josephson junctions under microwave irradiation, and in the magnetic flux periodicity of h/2e (where h is Planck's constant) in superconducting quantum interference devices.

View Article and Find Full Text PDF

Nanoscale superconductor/semiconductor hybrid devices are assembled from indium arsenide semiconductor nanowires individually contacted by aluminum-based superconductor electrodes. Below 1 kelvin, the high transparency of the contacts gives rise to proximity-induced superconductivity. The nanowires form superconducting weak links operating as mesoscopic Josephson junctions with electrically tunable coupling.

View Article and Find Full Text PDF

Progress in the fabrication of nanometre-scale electronic devices is opening new opportunities to uncover deeper aspects of the Kondo effect--a characteristic phenomenon in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots, carbon nanotubes and individual molecules. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of delocalized electrons.

View Article and Find Full Text PDF

The growth of III-V semiconductors on silicon would allow the integration of their superior (opto-)electronic properties with silicon technology. But fundamental issues such as lattice and thermal expansion mismatch and the formation of antiphase domains have prevented the epitaxial integration of III-V with group IV semiconductors. Here we demonstrate the principle of epitaxial growth of III-V nanowires on a group IV substrate.

View Article and Find Full Text PDF