The reverse transcriptase domain in telomerase proteins contains the essential conserved residues to catalyze the addition of a single nucleotide to the ends of DNA strands of most eukaryotic cells. In human telomerase protein, mutations in the conserved residues K902, R631, K626, D712, D868, and D869 are known to suppress catalytic activity. To understand these results, a computational model was constructed to simulate a ternary complex consisting of a model of the protein reverse transcriptase domain, a DNA/RNA double helix, an incoming dNTP, and two Mg ions.
View Article and Find Full Text PDFThis work deals with the use of predictors to identify useful B-cell linear epitopes to develop immunoassays. Experimental techniques to meet this goal are quite expensive and time consuming. Therefore, we tested 5 free, online prediction methods (AAPPred, ABCpred, BcePred, BepiPred and Antigenic) widely used for predicting linear epitopes, using the primary structure of the protein as the only input.
View Article and Find Full Text PDFRepetitive proteins (RP) of Trypanosoma cruzi are highly present in the parasite and are strongly recognized by sera from Chagas' disease patients. Flagelar Repetitive Antigen (FRA), which is expressed in all steps of the parasite life cycle, is the RP that displays the greatest number of aminoacids per repeat and has been indicated as one of the most suitable candidate for diagnostic test because of its high performance in immunoassays. Here we analyzed the influence of the number of repeats on the immunogenic and antigenic properties of the antigen.
View Article and Find Full Text PDF