When delivered directly into the brain, vitamin D, can improve glucose levels in male mice. Additionally, the loss of the vitamin D receptor (VDR) in male mice's paraventricular hypothalamus (PVH) results in impaired glucose tolerance. Data in humans shows that low vitamin D levels are detrimental to glucose homeostasis, an effect that may be more prominent in men.
View Article and Find Full Text PDFVitamin D action has been linked to several diseases regulated by the brain including obesity, diabetes, autism, and Parkinson's. However, the location of the vitamin D receptor (VDR) in the brain is not clear due to conflicting reports. We found that two antibodies previously published as specific in peripheral tissues are not specific in the brain.
View Article and Find Full Text PDFDespite correlations between low vitamin D levels and diabetes incidence/severity, supplementation with vitamin D has not been widely effective in improving glucose parameters. This may be due to a lack of knowledge regarding how low vitamin D levels physiologically affect glucose homeostasis. We have previously shown that the brain may be a critical area for vitamin d-mediated action on peripheral glucose levels.
View Article and Find Full Text PDFAims: Diabetes mellitus (DM) and impairments of glucose metabolism and insulin resistance in the brain have been suggested as a likely etiology of Alzheimer's disease (AD). Studies have shown that thyroid hormones (THs) improve insulin sensitivity in DM rats and act as mediators of the plasticity of the nervous system altering behavior and cognitive function. Based on these findings, this study aimed to evaluate the effects of diabetes and triiodothyronine (T3) treatment upon proteins associated with DM and AD in the central nervous system.
View Article and Find Full Text PDFIodide (I(-)) is an irreplaceable constituent of thyroid hormones and an important regulator of thyroid function, because high concentrations of I(-) down-regulate sodium/iodide symporter (NIS) expression and function. In thyrocytes, activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) cascade also inhibits NIS expression and function. Because I(-) excess and PI3K/Akt signaling pathway induce similar inhibitory effects on NIS expression, we aimed to study whether the PI3K/Akt cascade mediates the acute and rapid inhibitory effect of I(-) excess on NIS expression/activity.
View Article and Find Full Text PDFBackground: Thyroid hormones (THs) act genomically to stimulate glucose transport by elevating glucose transporter (Slc2a) expression and glucose utilization by cells. However, nongenomic effects of THs are now emerging. Here, we assess how triiodothyronine (T(3)) acutely affects glucose transport and the content of GLUT4, GLUT1, and GLUT3 at the surface of muscle cells, and possible interactions between T(3) and insulin action.
View Article and Find Full Text PDFBone tumor incidence in women peaks at age 50-60, coinciding with the menopause. That estrogen (E2) and triiodothyronine (T3) interact in bone metabolism has been well established. However, few data on the action of these hormones are available.
View Article and Find Full Text PDF