Publications by authors named "Silvana van Koningsbruggen"

Background: Proteasome-associated autoinflammatory syndromes (PRAASs) form a family of recently described rare autosomal recessive disorders of disturbed proteasome assembly and proteolytic activity caused by mutations in genes coding for proteasome subunits. The treatment options for these proteasome disorders consist of lifelong immunosuppressive drugs or Janus kinase inhibitors, which may have partial efficacy and noticeable side effects. Because proteasomes are ubiquitously expressed, it is unknown whether hematopoietic stem cell transplantation (HSCT) may be a sufficient treatment option.

View Article and Find Full Text PDF

Inborn errors of metabolism (IEMs) are a group of rare genetic disorders which, when emerging later in life, are often characterized by neuropsychiatric manifestations including psychosis. This study aimed to determine whether it would be useful to screen patients presenting with a psychotic disorder for IEMs by a single blood sample using Next Generation Sequencing (NGS), in order to detect rare, treatable causes of psychotic disorders. Blood was drawn from 60 patients with a psychotic disorder, with a duration of illness of less than 5 years.

View Article and Find Full Text PDF

Background: A Dutch cohort of 105 carefully selected limb girdle muscular dystrophy (LGMD) patients from 68 families has been subject to genetic testing over the last 20 years. After subsequent targeted gene analysis around two thirds (45/68) of the families had received a genetic diagnosis in 2013.

Objective: To describe the results of further genetic testing in the remaining undiagnosed limb girdle muscular dystrophy families in this cohort.

View Article and Find Full Text PDF

Introduction: Pigmentary mosaicism (PM) manifests by pigmentation anomalies along Blaschko's lines and represents a clue toward the molecular diagnosis of syndromic intellectual disability (ID). Together with new insights on the role for lysosomal signalling in embryonic stem cell differentiation, mutations in the X-linked transcription factor 3 () have recently been reported in five patients. Functional analysis suggested these mutations to result in ectopic nuclear gain of functions.

View Article and Find Full Text PDF

Background: Hereditary folate malabsorption is a multisystem disease owing to biallelic variants in the gene encoding the proton-coupled folate transporter. Hereditary folate malabsorption is treated with folinic acid, aimed to restore blood and cerebrospinal fluid folate levels. Little is known as to whether oral or intramuscular supplementation of folinic acid is most effective.

View Article and Find Full Text PDF

The heterogeneous nuclear ribonucleoprotein (HNRNP) genes code for a set of RNA-binding proteins that function primarily in the spliceosome C complex. Pathogenic variants in these genes can drive neurodegeneration, through a mechanism involving excessive stress-granule formation, or developmental defects, through mechanisms that are not known. Here, we report four unrelated individuals who have truncating or missense variants in the same C-terminal region of hnRNPR and who have multisystem developmental defects including abnormalities of the brain and skeleton, dysmorphic facies, brachydactyly, seizures, and hypoplastic external genitalia.

View Article and Find Full Text PDF
Article Synopsis
  • * About 25% of affected individuals met the criteria for autism, and the prevalence of epilepsy varied by sex, being more common in females, with many cases responding well to treatment.
  • * Individuals with missense variants in KMT2E showed the most severe developmental issues, including treatment-resistant epilepsy and microcephaly, highlighting the need for further research to understand the effects of these variants.
View Article and Find Full Text PDF

Purpose: A new syndrome with hypotonia, intellectual disability, and eye abnormalities (HIDEA) was previously described in a large consanguineous family. Linkage analysis identified the recessive disease locus, and genome sequencing yielded three candidate genes with potentially pathogenic biallelic variants: transketolase (TKT), transmembrane prolyl 4-hydroxylase (P4HTM), and ubiquitin specific peptidase 4 (USP4). However, the causative gene remained elusive.

View Article and Find Full Text PDF

Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation.

View Article and Find Full Text PDF

It has been well established that histone and DNA modifications are critical to maintaining the equilibrium between pluripotency and differentiation during early embryogenesis. Mutations in key regulators of DNA methylation have shown that the balance between gene regulation and function is critical during neural development in early years of life. However, there have been no identified cases linking epigenetic regulators to aberrant human development and fetal demise.

View Article and Find Full Text PDF
Article Synopsis
  • - Mutations in the SEPSECS gene have been linked to pontocerebellar hypoplasia type 2D, a serious neurodegenerative disorder that affects the brain structures responsible for motor control and cognitive function.
  • - The condition typically leads to severe disabilities and is often fatal during infancy; however, a case study presents a 23-year-old woman who showed milder symptoms and progressive issues related to cerebellar function and cognition.
  • - Whole exome sequencing revealed a specific mutation in the SEPSECS gene, suggesting that abnormalities in selenoprotein synthesis can cause less severe cerebellar atrophy that manifests later in life.
View Article and Find Full Text PDF

Bloom syndrome is an autosomal recessive condition characterized by severe pre- and postnatal growth deficiency, immunodeficiency, an increased risk for malignancies, craniofacial dysmorphisms, and "typical" erythematous sun-sensitive skin lesions of the face. This facial rash has a butterfly-shaped distribution around the nose and is usually observed for the first time during the early years of life. Though reported as being a main feature of Bloom syndrome, there seems to be phenotypic variability regarding this facial skin rash among patients.

View Article and Find Full Text PDF

We report on a boy with a neonatal short limb skeletal dysplasia with serious medical complications, associated with one intragenic and one complete deletion of XYLT1. XYLT1 mutations have recently been reported as causative in recessive Desbuquois skeletal dysplasia (DBSD), but the skeletal features in our patient do not fit this diagnosis. It is possible that the phenotype of XYLT1 mutations extends to more aspecific types of short limb skeletal dysplasias and not to DBSD alone.

View Article and Find Full Text PDF

FSHD region gene 1 (FRG1) is a dynamic nuclear and cytoplasmic protein that, in skeletal muscle, shows additional localization to the sarcomere. Maintaining appropriate levels of FRG1 protein is critical for muscular and vascular development in vertebrates; however, its precise molecular function is unknown. This study investigates the molecular functions of human FRG1, along with mouse FRG1 and Xenopus frg1, using molecular, biochemical, and cellular-biological approaches, to provide further insight into its roles in vertebrate development.

View Article and Find Full Text PDF

This live cell study of chromatin dynamics in four dimensions (space and time) in cycling human cells provides direct evidence for three hypotheses first proposed by Theodor Boveri in seminal studies of fixed blastomeres from Parascaris equorum embryos: (I) Chromosome territory (CT) arrangements are stably maintained during interphase. (II) Chromosome proximity patterns change profoundly during prometaphase. (III) Similar CT proximity patterns in pairs of daughter nuclei reflect symmetrical chromosomal movements during anaphase and telophase, but differ substantially from the arrangement in mother cell nucleus.

View Article and Find Full Text PDF

The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes.

View Article and Find Full Text PDF

Human small nucleolar RNAs (snoRNAs) that copurify with nucleoli isolated from HeLa cells have been characterized. Novel fibrillarin-associated snoRNAs were detected that allowed the creation of a new vector system for the targeted knockdown of one or more genes in mammalian cells. The snoMEN (snoRNA modulator of gene expressioN) vector technology is based on snoRNA HBII-180C, which contains an internal sequence that can be manipulated to make it complementary to RNA targets.

View Article and Find Full Text PDF

The nucleolus is a distinct subnuclear compartment that was first observed more than 200 years ago. Nucleoli assemble around the tandemly repeated ribosomal DNA gene clusters and 28S, 18S and 5.8S ribosomal RNAs (rRNAs) are transcribed as a single precursor, which is processed and assembled with the 5S rRNA into ribosome subunits.

View Article and Find Full Text PDF

FRG1 is considered a candidate gene for facioscapulohumeral muscular dystrophy (FSHD) based on its location at chromosome 4qter and its upregulation in FSHD muscle. The FRG1 protein (FRG1P) localizes to nucleoli, Cajal bodies (and speckles), and has been suggested to be a component of the human spliceosome but its exact function is unknown. Recently, transgenic mice overexpressing high levels of FRG1P in skeletal muscle were described to present with muscular dystrophy.

View Article and Find Full Text PDF

Oculopharyngeal muscular dystrophy (OPMD) belongs to the group of protein aggregation disorders and is caused by extensions of the N-terminal polyalanine stretch of the nuclear polyA-binding protein 1 (PABPN1). The presence of PABPN1-containing intranuclear aggregates in skeletal muscle is unique for OPMD and is also observed in transgenic mouse and cell models for OPMD. These models consistently support a direct role for the protein aggregation in OPMD pathogenesis.

View Article and Find Full Text PDF