Publications by authors named "Silvana Roberto"

The present investigation aimed to study the cardiovascular responses and the cerebral oxygenation (Cox) during exercise in acute hypoxia and with contemporary mental stress. Fifteen physically active, healthy males (age 29.0 ± 5.

View Article and Find Full Text PDF

Hypoxia can impair cognitive performance, whereas exercise can enhance it. The effects of hypoxia on cognitive performance during exercise appear to be moderated by exercise duration and intensity and by severity and duration of hypoxia and cognitive task. In normal individuals, exercise under hypoxia can evoke adverse post-exercise mood states, such as tension and fatigue.

View Article and Find Full Text PDF

Hemodynamic changes during exercise in acute hypoxia (AH) have not been completely elucidated. The present study aimed to investigate hemodynamics during an acute bout of mild, dynamic exercise during moderate normobaric AH. Twenty-two physically active, healthy males (average age; range 23-40 years) completed a cardiopulmonary test on a cycle ergometer to determine their maximum workload (W).

View Article and Find Full Text PDF

The hemodynamic consequences of aging have been extensively investigated during maximal incremental exercise. However, less is known about the effects of aging on hemodynamics during submaximal steady-state exercise. The aim of the present investigation was to compare the hemodynamics of healthy elderly and young subjects during an exercise bout conducted at the gas threshold (GET) intensity.

View Article and Find Full Text PDF

Background: At the beginning of March 2020, because of the ongoing pandemic, all sport events were suspended in Italy. The Italian Serie A league abruptly interrupted all competitions and teams could not train in a group anymore. These containment measures were gradually eased in May.

View Article and Find Full Text PDF

Acute hypoxia (AH) is a challenge to the homeostasis of the cardiovascular system, especially during exercise. Research in this area is scarce. We aimed to ascertain whether echocardiographic, Doppler, and tissue Doppler measures were able to detect changes in systolic and diastolic functions during the recovery after mild exercise in AH.

View Article and Find Full Text PDF

Cardiovascular regulation is altered by type 2 diabetes mellitus (DM2), producing an abnormal response to muscle metaboreflex. During physical exercise, cerebral blood flow is impaired in patients with DM2, and this phenomenon may reduce cerebral oxygenation (COX). We hypothesized that the simultaneous execution of a mental task (MT) and metaboreflex activation would reduce COX in patients with DM2.

View Article and Find Full Text PDF

Vinson and Ama Dablam are summits of different altitudes (4897 and 6812 m respectively). There are no published studies comparing physiological adaptations occurring after climbing both peaks yet. This case study compares changes in certain physiological parameters and body composition of a mountaineer who ascended both peaks.

View Article and Find Full Text PDF

Purpose: The hemodynamic consequences of exercise in hypoxia have not been completely investigated. The present investigation aimed at studying the hemodynamic effects of contemporary normobaric hypoxia and metaboreflex activation.

Methods: Eleven physically active, healthy males (age 32.

View Article and Find Full Text PDF

The hemodynamic response to muscle metaboreflex has been reported to be significantly altered by metabolic syndrome (MS), with exaggerated systemic vascular resistance (SVR) increments and reduced cardiac output (CO) in comparison to healthy controls (CTLs). Moreover, patients with metabolic disorders, such as type 2 diabetes, have proven to have impaired cerebral blood flow in response to exercise. Thus, we hypothesized that contemporary mental task (MT) and metaboreflex would result in reduced cerebral oxygenation (COX) in these patients.

View Article and Find Full Text PDF

Metabolic syndrome, diabetes, and ischemic heart disease are among the leading causes of death and disability in Western countries. Diabetic cardiomyopathy is responsible for the most severe signs and symptoms. An important strategy for reducing the incidence of cardiovascular disease is regular exercise.

View Article and Find Full Text PDF

Purpose: Little is known about the cardiovascular effects of the transition from exercise in hypoxia (EH) to normoxia. This investigation aimed to assess hemodynamics during the metaboreflex elicited in normoxia after EH.

Methods: Ten trained athletes (four females and six males, age 35.

View Article and Find Full Text PDF

Blood flow restriction training (BFRT) has been proposed to induce muscle hypertrophy, but its safety remains controversial as it may increase mean arterial pressure (MAP) due to muscle metaboreflex activation. However, BFR training also causes metabolite accumulation that may desensitize type III and IV nerve endings, which trigger muscle metaboreflex. Then, we hypothesized that a period of BFR training would result in blunted hemodynamic activation during muscle metaboreflex.

View Article and Find Full Text PDF

Metaboreflex is a reflex triggered during exercise or postexercise muscle ischemia (PEMI) by metaboreceptor stimulation. Typical features of metaboreflex are increased cardiac output (CO) and blood pressure. Patients suffering from metabolic syndrome display hemodynamic abnormalities, with an exaggerated systemic vascular resistance (SVR) and reduced CO response during PEMI-induced metaboreflex.

View Article and Find Full Text PDF

Much of the information available in the literature on physiological responses during Enduro motorcycling is related to heart rate (HR) and blood lactate (BLa). The aim of this work was to investigate the hemodynamic changes that occur during a 10-min session of Enduro motorcycling. Fifteen skilled riders were enrolled on the study and all participants underwent an Enduro-motorcycling session on a standard track.

View Article and Find Full Text PDF

This study was devised to investigate the effect of coronary artery disease (CAD) without overt signs of heart failure on the cardiovascular responses to muscle metaboreflex activation. We hypothesized that any CAD-induced preclinical systolic and/or diastolic dysfunction could impair hemodynamic response to the metaboreflex test. Twelve men diagnosed with CAD without any sign or symptoms of heart failure and 11 age-matched healthy control (CTL) subjects participated in the study.

View Article and Find Full Text PDF

The aim of the present investigation was to assess the role of cardiac diastole on the hemodynamic response to metaboreflex activation. We wanted to determine whether patients with diastolic function impairment showed a different hemodynamic response compared with normal subjects during this reflex. Hemodynamics during activation of the metaboreflex obtained by postexercise muscle ischemia (PEMI) was assessed in 10 patients with diagnosed heart failure with preserved ejection fraction (HFpEF) and in 12 age-matched healthy controls (CTL).

View Article and Find Full Text PDF

At rest the proportion between systolic and diastolic periods of the cardiac cycle is about 1/3 and 2/3 respectively. Therefore, mean blood pressure (MBP) is usually calculated with a standard formula (SF) as follows: MBP = diastolic blood pressure (DBP) + 1/3 [systolic blood pressure (SBP) - DBP]. However, during exercise this proportion is lost because of tachycardia, which shortens diastole more than systole.

View Article and Find Full Text PDF

Introduction: One challenging problem in patients suffering from Diabetes Mellitus (DM) is the elevate incidence of cardiovascular events. Exercise has been proved useful in reducing cardiovascular risks in these patients. However, both type 1 and 2 DM significantly affect the cardiovascular response during exercise.

View Article and Find Full Text PDF

Background: We hypothesized that overnight fasting after a short dietary period, especially with carbohydrates, could allow performing breath-hold diving with no restraint for diaphragm excursion and blood shift and without any increase of metabolism, and in turn improve the diving response.

Methods: During two separate sessions, 8 divers carried out two trials: (A) a 30-m depth dive, three hours after a normal breakfast and (B) a dive to the same depth, but after following a diet and fasting overnight. Each test consisted of 3 apnea phases: descent, static and ascent whose durations were measured by a standard chronometer.

View Article and Find Full Text PDF

Ischemic preconditioning (IP) has been shown to improve exercise performance and to delay fatigue. However, the precise mechanisms through which IP operates remain elusive. It has been hypothesized that IP lowers the sensation of fatigue by reducing the discharge of group III and IV nerve endings, which also regulate hemodynamics during the metaboreflex.

View Article and Find Full Text PDF

Motor commands to perform exercise tasks may also induce activation of cardiovascular centres to supply the energy needs of the contracting muscles. Mental stressors per se may also influence cardiovascular homeostasis. We investigated the cardiovascular response of trained runners simultaneously engaged in mental and physical tasks to establish if aerobically trained subjects could develop, differently from untrained ones, nervous facilitation in the brain cardiovascular centre.

View Article and Find Full Text PDF

Patients suffering from obesity and metabolic syndrome (OMS) manifest a dysregulation in hemodynamic response during exercise, with an exaggerated systemic vascular increase. However, it is not clear whether this is the consequence of metabolic syndrome per se or whether it is due to concomitant obesity. The aim of the present investigation was to discover whether OMS and noncomplicated obesity resulted in different hemodynamic responses during the metaboreflex.

View Article and Find Full Text PDF

Purpose: The aim of the present investigation was to assess the role of aging on the contribution of diastolic function during metaboreflex activation. In particular, it aimed to determine whether age-related impairment in diastolic function would produce a different hemodynamic response in elderly subjects (EG) as compared to young controls (CTL).

Methods: Hemodynamic response to metaboreflex activation obtained by post-exercise muscle ischemia (PEMI) was gathered in 22 EG and 20 healthy CTL.

View Article and Find Full Text PDF

Spinal cord injured (SCI) individuals show an altered hemodynamic response to metaboreflex activation due to a reduced capacity to vasoconstrict the venous and arterial vessels below the level of the lesion. Exercise training was found to enhance circulating catecholamines and to improve cardiac preload and venous tone in response to exercise in SCI subjects. Therefore, training would result in enhanced diastolic function and capacity to vasoconstrict circulation.

View Article and Find Full Text PDF