Publications by authors named "Silvana Pinheiro"

The front cover artwork is provided by CBio Laboratory and Computational Toxicology and Artificial Intelligence Laboratory (LaToxCIA) both at the University of Costa Rica. The image shows the formalisms commonly used to determine the pH-dependent lipophilicity profile of ionizable compounds. Herein, for 4-phenylbutylamine it is accurately predicted when the apparent ion pair partitioning is considered.

View Article and Find Full Text PDF

Lipophilicity is a physicochemical property with wide relevance in drug design, computational biology, food, environmental and medicinal chemistry. Lipophilicity is commonly expressed as the partition coefficient for neutral molecules, whereas for molecules with ionizable groups, the distribution coefficient (D) at a given pH is used. The logD is usually predicted using a pH correction over the logP using the pK of ionizable molecules, while often ignoring the apparent ion pair partitioning .

View Article and Find Full Text PDF

In recent years the use of partition systems other than the widely used biphasic -octanol/water has received increased attention to gain insight into the molecular features that dictate the lipophilicity of compounds. Thus, the difference between -octanol/water and toluene/water partition coefficients has proven to be a valuable descriptor to study the propensity of molecules to form intramolecular hydrogen bonds and exhibit chameleon-like properties that modulate solubility and permeability. In this context, this study reports the experimental toluene/water partition coefficients (log ) for a series of 16 drugs that were selected as an external test set in the framework of the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) blind challenge.

View Article and Find Full Text PDF

In SARS-CoV-2 replication complex, the Non-structural protein 9 (Nsp9) is an important RNA binding subunit in the RNA-synthesizing machinery. The dimeric forms of coronavirus Nsp9 increase their nucleic acid binding affinity and the N-finger motif appears to play a critical role in dimerization. Here, we present a structural, lipophilic and energetic study about the Nsp9 dimer of SARS-CoV-2 through computational methods that complement hydrophobicity scales of amino acids with molecular dynamics simulations.

View Article and Find Full Text PDF

A multiple linear regression model called MLR-3 is used for predicting the experimental n-octanol/water partition coefficient (log P) of 22 N-sulfonamides proposed by the organizers of the SAMPL7 blind challenge. The MLR-3 method was trained with 82 molecules including drug-like sulfonamides and small organic molecules, which resembled the main functional groups present in the challenge dataset. Our model, submitted as "TFE-MLR", presented a root-mean-square error of 0.

View Article and Find Full Text PDF

Within the scope of SAMPL7 challenge for predicting physical properties, the Integral Equation Formalism of the Miertus-Scrocco-Tomasi (IEFPCM/MST) continuum solvation model has been used for the blind prediction of n-octanol/water partition coefficients and acidity constants of a set of 22 and 20 sulfonamide-containing compounds, respectively. The log P and pK were computed using the B3LPYP/6-31G(d) parametrized version of the IEFPCM/MST model. The performance of our method for partition coefficients yielded a root-mean square error of 1.

View Article and Find Full Text PDF

The IEFPCM/MST continuum solvation model is used for the blind prediction of n-octanol/water partition of a set of 11 fragment-like small molecules within the SAMPL6 Part II Partition Coefficient Challenge. The partition coefficient of the neutral species (log P) was determined using an extended parametrization of the B3LYP/6-31G(d) version of the Miertus-Scrocco-Tomasi continuum solvation model in n-octanol. Comparison with the experimental data provided for partition coefficients yielded a root-mean square error (rmse) of 0.

View Article and Find Full Text PDF

Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins.

View Article and Find Full Text PDF

Förster resonance energy transfer (FRET) reactions involving ligands and aromatic amino acids can substantially impact the fluorescence properties of a protein-ligand complex, an impact intimately related to the corresponding binding mode. Structural characterization of such binding events in terms of intermolecular distances can be done through the well-known R distance-dependent Förster rate expression. However, such an interpretation suffers from uncertainties underlying Förster theory in the description of the electronic coupling that promotes FRET, mostly related to the dipole-dipole orientation factor, dielectric screening effects, and deviations from the ideal dipole approximation.

View Article and Find Full Text PDF