Publications by authors named "Silvana Apichela"

Lectin-like molecules play a key role in mammalian sperm functionality. These multifunctional proteins have been proven to be involved in sperm capacitation, sperm motility, and viability, formation of the oviductal sperm reservoir, and in sperm-oocyte interaction. In a previous study, we reported the presence of a novel seminal plasma lectin, sperm lectin 15 kDa (SL15), adsorbed to the llama sperm.

View Article and Find Full Text PDF

One striking reproductive feature in South American camelids is that more than 90% of gestations are established in the left uterine horn (LUH). This phenomenon could be related to a differential vascular irrigation of the LUH. An increase of vascularization in llama endometrium was observed after systemic administration of Beta Nerve Growth Factor (β-NGF), a neurotrophin present in the uterus and placenta of various mammals that is involved in pregnancy development.

View Article and Find Full Text PDF

To provide new insights into the mechanisms through which seminal plasma proteins can protect sperm from damage caused during refrigeration, we evaluate the possibility that β-NGF can contribute to the improvement of sperm quality after cooling. First, β-NGF was detected in refrigerated sperm and compared with unrefrigerated sperm by western blotting of the proteins adsorbed by sperm, showing that native β-NGF is still present even 24 h after cooling only as an active form. Then, the effect of exogenous β-NGF on sperm quality after cooling was evaluated.

View Article and Find Full Text PDF

Semen cryopreservation in South American camelids has a low efficiency. Post-thaw viability of sperm is low, and poor results are obtained when artificial insemination is performed with cryopreserved semen, impeding advances both in accelerated genetic progress and selection. This study aimed to describe the effect of a conventional method of camelid semen cryopreservation on the llama sperm ultrastructure during cooling and freezing, using transmission and scanning electron microscopy (TEM, SEM).

View Article and Find Full Text PDF

The beta-nerve growth factor (β-NGF) from llama seminal plasma exerts ovulatory and luteotrophic effects following intramuscular or intrauterine infusion in llamas and alpacas. In this study, we investigate the effect of llama β-NGF on the expression of genes involved in angiogenesis and progesterone synthesis as well as progesterone release in preovulatory llama granulosa cells; we also determine whether these changes are mediated via the ERK1/2 signaling pathway. From adult female llamas, we collected granulosa cells from preovulatory follicles by transvaginal ultrasound-guided follicle aspiration; these cells were pooled and incubated.

View Article and Find Full Text PDF

Copulation produces different stimuli in the female reproductive tract in camelids, which lead to ovulation. Expression of β-nerve growth factor (β-NGF) and its specific receptor, tropomyosin receptor kinase A (TrKA), was studied comparing the oviductal microenvironment of mated and nonmated llamas. β-NGF and TrKA were expressed in the llama ampulla, isthmus, and utero-tubal-junction (UTJ), and they were mainly colocalized in the apical region of the oviductal mucosa.

View Article and Find Full Text PDF

More than 98% of the pregnancies in South American camelids is carried out in the left uterine horn (LUH). Hence, embryos originated from right-ovary ovulations have to migrate to the contralateral or left uterine horn (LUH) to implant and survive. A reason for this unique pattern of embryo implantation has not been elucidated yet.

View Article and Find Full Text PDF

To gain further insight in the mechanisms of the embryo-maternal dialog in the oviduct, expression of members of the transforming growth factor-β superfamily, NODAL, its inhibitor, LEFTY2, and their coreceptor, CFC1, were studied in the oviduct of 3-day post copula (3 dpc) females with and without embryos (E and NE), pseudopregnant rats (SP3), and in 3-day embryos. Nodal transcripts in SP3 oviducts showed a steady-state relative abundance when compared with proestrus stage and the 3 dpc. In contrast, Lefty2 and Cfc1 relative abundance levels in proestrus and 3 dpc were higher.

View Article and Find Full Text PDF

β-Nerve growth factor (β-NGF) is a seminal plasma element, responsible for inducing ovulation in camelids. The main organ of β-NGF production remains nondescript. The aims of this study were to (a) characterize gene expression and protein localization of β-NGF and its main receptor tyrosine kinase receptor A (TrKA) in the llama male reproductive tract, and (b) determine whether the seminal β-NGF interacts with ejaculated sperm by localizing β-NGF and TrKA in epididymal, ejaculated, and acrosome-reacted (AR) sperms and, additionally, by identifying β-NGF presence in sperm-adsorbed proteins (SAP).

View Article and Find Full Text PDF

South American Camelids (SAC) have unique reproductive features, one of which is that 98% of the pregnancies develop in the left uterine horn. Furthermore, early pregnancy is an uncharacterized process in these species, especially in regard to the ultrastructural, biochemical and genetic changes that the uterine epithelial surface undergoes to allow embryo implantation. The present study describes the uterine horn luminal surface and the characteristics of the mucinous glycocalyx in non-pregnant and early pregnant (15 days) female alpacas.

View Article and Find Full Text PDF

Ovulation of South American Camelids is induced by mating. After copulation, sperm are stored into the oviduct to be released near ovulation time. To study whether copulation induces matrix metalloproteinase-2 (MMP2) secretion in the oviduct, the occurrence of MMP2 in oviductal tissue and oviductal fluid (OF) from 24 h post-mated was compared with non-mated llama females.

View Article and Find Full Text PDF

The oviductal sperm reservoir of South American camelids is formed when sperm bind to N-acetylgalactosamine (GalNAc) on the surface of oviductal epithelium. The aim of this study was to characterize the GalNAc-binding proteins on llama sperm, and to establish their origin. Sperm-adsorbed proteins were extracted with 0.

View Article and Find Full Text PDF

The objectives of this work were to describe some morphometric characteristics and to establish quantitative parameters of different regions of the equine oviductal mucosa from the isthmus, ampullary-isthmic junction (AIJ), and ampulla. Twenty-one mixed-bred mares were used for this study. Mares were selected in the following reproductive phases: anestrus, estrus, and diestrus.

View Article and Find Full Text PDF

Members of TGF-β superfamily play a major role in the endometrial changes involved in the establishment and maintenance of pregnancy. Their deregulated expression and action could lead to absolute or partial failure of embryo implantation. Nonetheless, the precise function and mechanism of many of these cytokines remain unclear.

View Article and Find Full Text PDF

In mammals, fertilization and preimplantation embryo development occurs in the oviduct. Cross-talk between the developing embryos and the maternal reproductive tract has been described in such a way as to show that the embryos modulate the physiology and gene expression of the oviduct. Different studies have indicated that transforming growth factor beta (TGF-β) can modulate the oviductal microenvironment and act as an autocrine/paracrine factor on embryo development.

View Article and Find Full Text PDF

Sperm binding to oviductal epithelium would be involved in sperm reservoir formation in the utero tubal junction (UTJ). Although in other mammals sperm-oviduct interaction has been proved to be mediated by carbohydrate-recognition mechanisms, the factors implicated in the sperm adhesion to oviductal epithelium of llama are still unknown. In order to assess the role of carbohydrates present in the mucosa surface, we examined the distribution of glycoconjugates in the llama oviduct by confocal lectin-histochemistry.

View Article and Find Full Text PDF