The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in - an extremely efficient vector of West Nile virus (WNV) - nonexistent. We performed single-cell RNA sequencing on midguts, defined multiple cell types, and determined whether specific cell types are more permissive to WNV infection.
View Article and Find Full Text PDFThe freshwater snail is an intermediate host of , the agent of human intestinal schistosomiasis. However, much is to be discovered about its innate immune system that appears as a complex black box, in which the immune cells (called hemocytes) play a major role in both cellular and humoral response towards pathogens. Until now, hemocyte classification has been based exclusively on cell morphology and ultrastructural description and depending on the authors considered from 2 to 5 hemocyte populations have been described.
View Article and Find Full Text PDFAerolysins initially characterized as virulence factors in bacteria are increasingly found in massive genome and transcriptome sequencing data from metazoans. Horizontal gene transfer has been demonstrated as the main way of aerolysin-related toxins acquisition in metazoans. However, only few studies have focused on their potential biological functions in such organisms.
View Article and Find Full Text PDFIt is unclear how genetic aberrations impact the state of nascent tumour cells and their microenvironment. BRCA1 driven triple negative breast cancer (TNBC) has been shown to arise from luminal progenitors yet little is known about how BRCA1 loss-of-function (LOF) and concomitant mutations affect the luminal progenitor cell state. Here we demonstrate how time-resolved single-cell profiling of genetically engineered mouse models before tumour formation can address this challenge.
View Article and Find Full Text PDFWe describe here a protocol for the generation of sequence-ready libraries for population epigenomics studies, and the analysis of alignment results. We show that the protocol can be used to monitor chromatin structure changes in populations when exposed to environmental cues. The protocol is a streamlined version of the Assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) that provides a positive display of accessible, presumably euchromatic regions.
View Article and Find Full Text PDFMetastasis constitutes the primary cause of cancer-related deaths, with the lung being a commonly affected organ. We found that activation of lung-resident group 2 innate lymphoid cells (ILC2s) orchestrated suppression of natural killer (NK) cell-mediated innate antitumor immunity, leading to increased lung metastases and mortality. Using multiple models of lung metastasis, we show that interleukin (IL)-33-dependent ILC2 activation in the lung is involved centrally in promoting tumor burden.
View Article and Find Full Text PDFA possible malaria control approach involves the dissemination in mosquitoes of inherited symbiotic microbes to block Plasmodium transmission. However, in the Anopheles gambiae complex, the primary African vectors of malaria, there are limited reports of inherited symbionts that impair transmission. We show that a vertically transmitted microsporidian symbiont (Microsporidia MB) in the An.
View Article and Find Full Text PDFis a freshwater Planorbidae snail. In its environment, this mollusk faces numerous microorganisms or pathogens, and has developed sophisticated innate immune mechanisms to survive. The mechanisms of recognition are quite well understood in , but immune effectors have been seldom described.
View Article and Find Full Text PDFThe Fasciola hepatica/Pseudosuccinea columella interaction in Cuba involves a unique pattern of phenotypes; while most snails are susceptible, some field populations are naturally resistant to infection and parasites are encapsulated by snail hemocytes. Thus, we investigated the hemocytes of resistant (R) and susceptible (S) P. columella, in particular morphology, abundance, proliferation and in vitro encapsulation activity following exposure to F.
View Article and Find Full Text PDFSelective pressures between hosts and their parasites can result in reciprocal evolution or adaptation of specific life history traits. Local adaptation of resident hosts and parasites should lead to increase parasite infectivity/virulence (higher compatibility) when infecting hosts from the same location (in sympatry) than from a foreign location (in allopatry). Analysis of geographic variations in compatibility phenotypes is the most common proxy used to infer local adaptation.
View Article and Find Full Text PDFInvertebrate immune response may be primed by a current infection in a sustained manner, leading to the failure of a secondary infection with the same pathogen. The present study focuses on the Schistosomiasis vector snail Biomphalaria glabrata, in which a specific genotype-dependent immunological memory was demonstrated as a shift from a cellular to a humoral immune response. Herein, we investigate the complex molecular bases associated with this genotype-dependant immunological memory response.
View Article and Find Full Text PDFInsect thioester-containing protein (iTEP) is the most recently defined group among the thioester-containing protein (TEP) superfamily. TEPs are key components of the immune system, and iTEPs from flies and mosquitoes were shown to be major immune weapons. Initially characterized from insects, TEP genes homologous to iTEP were further described from several other invertebrates including arthropods, cniderians, and mollusks albeit with few functional characterizations.
View Article and Find Full Text PDFOver the last decades, there was increasing evidence for the presence of innate immune memory in living organisms. In this review, we compare the innate immune memory of various organisms with a focus on phylogenetics. We discuss the acquisition and molecular basis of immune memory and we describe the innate immune memory paradigm and its role in host defense during evolution.
View Article and Find Full Text PDFDetection of pathogens by all living organisms is the primary step needed to implement a coherent and efficient immune response. This implies a mediation by different soluble and/or membrane-anchored proteins related to innate immune receptors called PRRs (pattern-recognition receptors) to trigger immune signaling pathways. In most invertebrates, their roles have been inferred by analogy to those already characterized in vertebrate homologs.
View Article and Find Full Text PDFThe fresh water snail Biomphalaria glabrata is one of the vectors of the trematode pathogen Schistosoma mansoni, which is one of the agents responsible of human schistosomiasis. In this host-parasite interaction, co-evolutionary dynamic results into an infectivity mosaic known as compatibility polymorphism. Integrative approaches including large scale molecular approaches have been conducted in recent years to improve our understanding of the mechanisms underlying compatibility.
View Article and Find Full Text PDFIn recent decades, numerous studies have sought to better understand the mechanisms underlying the compatibility between Biomphalaria glabrata and Schistosoma mansoni. The developments of comparative transcriptomics, comparative genomics, interactomics and more targeted approaches have enabled researchers to identify a series of candidate genes. However, no molecular comparative work has yet been performed on multiple populations displaying different levels of compatibility.
View Article and Find Full Text PDFWe report the genome sequence and organization of five viruses infecting snails of both Biomphalaria glabrata and Biomphalaria pfeifferi, which are vectors of the intestinal schistosomiasis. Four viruses presented a polyadenylated positive single strand RNA genome encoding one or two large open reading frames (ORFs) flanked by untranslated region. Conserved protein motifs typical of the picorna-like virus superfamily were identified in these viruses but they all presented different genome organization.
View Article and Find Full Text PDFDiscoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called "immune priming" or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations.
View Article and Find Full Text PDF