Publications by authors named "Silva-Vilches C"

Adenosine (Ado) produced by skin and skin migratory CD73 dendritic cells is critically involved in tolerance to haptens. We therefore investigated the use of Ado receptor agonists for the treatment of contact hypersensitivity reactions. A- 4-[2-[[6-Amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino] ethyl]benzenepropanoic acid hydrochloride (CGS) and A- 2-[[6-Amino-3,5-dicyano-4-[4-[cyclopropylmethoxy]phenyl]-2-pyridinyl]thio]-acetamide (BAY) specific Ado receptor agonists were epicutaneously applied to the skin before sensitization and challenge with DNFB.

View Article and Find Full Text PDF

Background: Chemokine ligand-20 (CCL20) expressed in the epidermis is a potent impetus for the recruitment of CC-chemokine receptor 6 (CCR6)-expressing subsets of DCs, B-cells and memory T-cells into the skin. CCL20 and CCR6+ immune cells have been detected in chronic inflammatory skin diseases and several malignancies, including melanoma. Yet, the functional contribution of the CCR6/CCL20 axis for melanoma progression remains controversial.

View Article and Find Full Text PDF

Adenosine (Ado) is a well-studied neurotransmitter, but it also exerts profound immune regulatory functions. Ado can (i) actively be released by various cells into the tissue environment and can (ii) be produced through the degradation of extracellular ATP by the concerted action of CD39 and CD73. In this sequence of events, the ectoenzyme CD39 degrades ATP into ADP and AMP, respectively, and CD73 catalyzes the last step leading to the production of Ado.

View Article and Find Full Text PDF

Dendritic cells (DCs) express the ecto-5'-nucleotidase CD73 that generates immunosuppressive adenosine (Ado) by dephosphorylation of extracellular Ado monophosphate and diphosphate. To investigate whether CD73-derived Ado has immune-suppressive activity, 2,4-dinitrothiocyanobenzene (DNTB) was applied to skin of wild-type (WT) or CD73-deficient (CD73) mice, followed by sensitization and challenge with 2,4-dinitrofluorobenzene. In this model, we show the induction of tolerance by DNTB against 2,4-dinitrofluorobenzene only in WT but not in CD73 mice.

View Article and Find Full Text PDF

Dendritic cells (DCs) are important inducers and regulators of T-cell responses. They are able to activate and modulate the differentiation of CD4 and CD8 T cells. In the skin, there are at least five phenotypically distinct DC subpopulations that can be distinguished by differential expression of the cell surface markers CD207, CD103, and CD11b.

View Article and Find Full Text PDF

Immature or semi-mature dendritic cells (DCs) represent tolerogenic maturation stages that can convert naive T cells into Foxp3+ induced regulatory T cells (iTreg). Here we found that murine bone marrow-derived DCs (BM-DCs) treated with cholera toxin (CT) matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CThi, CTlo) or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β).

View Article and Find Full Text PDF

Background: Application of haptens to the skin induces release of immune stimulatory ATP into the extracellular space. This "danger" signal can be converted to immunosuppressive adenosine (ADO) by the action of the ectonucleotidases CD39 and CD73, expressed by skin and immune cells. Thus, the expression and regulation of CD73 by skin derived cells may have crucial influence on the outcome of contact hypersensitivity (CHS) reactions.

View Article and Find Full Text PDF