Cardiomyocyte senescence plays a crucial role in the pathophysiology of age-related cardiovascular disease. Senescent cells with impaired contractility, mitochondrial dysfunction, and hypertrophic growth accumulate in the heart during aging, contributing to cardiac dysfunction and remodeling. Mitochondrial dynamics is altered in aging cells, leading to changes in their function and morphology.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
November 2024
Transgender is a term for people whose gender identity or expression differs from their natal sex. These individuals often seek cross-hormonal therapy to simulate the individual´s desired gender. However, the use of estrogens and testosterone has side effects such as a higher propensity to cancer, weight changes and cardiovascular diseases.
View Article and Find Full Text PDFDiscov Oncol
July 2024
Glioblastoma (GBM) is an aggressive form of cancer affecting the Central Nervous System (CNS) of thousands of people every year. Redox alterations have been shown to play a key role in the development and progression of these tumors as Reactive Oxygen Species (ROS) formation is involved in the modulation of several signaling pathways, transcription factors, and cytokine formation. The second-generation oral alkylating agent temozolomide (TMZ) is the first-line chemotherapeutic drug used to treat of GBM, though patients often develop primary and secondary resistance, reducing its efficacy.
View Article and Find Full Text PDFMol Neurobiol
September 2024
Maternal obesity predisposes offspring (F1) to cardiovascular disease. To evaluate basal heart function and ischemia-reperfusion (IR) responses in F1 males and females of obese mothers, female Wistar rats (F0) were fed chow or an obesogenic (MO) diet from weaning through pregnancy and lactation. Non-sibling F1 males and females were weaned to chow at postnatal day (PND) 21 and euthanized at PND 550.
View Article and Find Full Text PDFMol Neurobiol
September 2024
Mitochondrial dysfunction plays a key role in the development of neurodegenerative disorders. In contrast, the regulation of the endocannabinoid system has been shown to promote neuroprotection in different neurotoxic paradigms. The existence of an active form of the cannabinoid receptor 1 (CB1R) in mitochondrial membranes (mitCB1R), which might exert its effects through the same signaling mechanisms as the cell membrane CB1R, has been shown to regulate mitochondrial activity.
View Article and Find Full Text PDFCellular senescence is characteristic of the development and progression of multiple age-associated diseases. Accumulation of senescent cells in the heart contributes to various age-related pathologies. Several compounds called senolytics have been designed to eliminate these cells within the tissues.
View Article and Find Full Text PDFAntioxidants (Basel)
August 2023
The incidence of kidney disease is increasing worldwide. Acute kidney injury (AKI) can strongly favor cardio-renal syndrome (CRS) type 3 development. However, the mechanism involved in CRS development is not entirely understood.
View Article and Find Full Text PDFMitochondria-endoplasmic reticulum (ER) communication relies on platforms formed at the ER membrane with the mitochondrial outer membrane contact sites (MERCs). MERCs are involved in several processes including the unfolded protein response (UPR) and calcium (Ca) signaling. Therefore, as alterations in MERCs greatly impact cellular metabolism, pharmacological interventions to preserve productive mitochondrial-ER communication have been explored to maintain cellular homeostasis.
View Article and Find Full Text PDFThere is increasing evidence that either ingested or produced fructose may have a role in metabolic syndrome. While not commonly considered a criterion for metabolic syndrome, cardiac hypertrophy is often associated with metabolic syndrome, and its presence carries increased cardiovascular risk. Recently it has been shown that fructose and fructokinase C (KHK) can be induced in cardiac tissue.
View Article and Find Full Text PDFCardiosomes, exosomes released in cardiospheres by cardiomyocytes and progenitor cells, communicate locally and at a distance from different tissues, promoting beneficial cellular changes. For example, miRNAs have emerged as regulators of intercellular communication via transport by extracellular vesicles in general and cardiosomes specifically. Although cardiosomes are considered biomarkers owing to their immense biomedical application in various clinical fields, their role in cardiovascular diseases remains unclear.
View Article and Find Full Text PDFCaveolae-associated signaling toward mitochondria contributes to the cardioprotective mechanisms against ischemia-reperfusion (I/R) injury induced by ischemic postconditioning. In this work, we evaluated the role that the actin-cytoskeleton network exerts on caveolae-mitochondria communication during postconditioning. Isolated rat hearts subjected to I/R and to postconditioning were treated with latrunculin A, a cytoskeleton disruptor.
View Article and Find Full Text PDFLongitudinal studies are mandatory to study aging, however, they have certain drawbacks, for example, they require strict maintenance that is expensive given the breeding time (approximately 2 years) and with a low survival rate, having some animals to study very limitedly. In vitro studies provide useful and invaluable information on the cellular and molecular mechanisms that help understand the aging process to overcome these aspects. In particular, the model of premature aging induced by chronic exposure to D-galactose (D-Gal) offers a very similar picture to that which occurs in natural aging.
View Article and Find Full Text PDFPharmaceuticals (Basel)
July 2022
Extracellular vesicles are recognized as signaling mediators between cells both in physiological and pathological communication. In this work, we explored the potential effect of citicoline to modify relevant proteins or miRNAs for cardioprotection in the smallest population of such microvesicles; i.e.
View Article and Find Full Text PDFNowadays, the nutraceutical agent sulforaphane (SFN) shows great versatility in turning on different cellular responses. Mainly, this isothiocyanate acts as a master regulator of cellular homeostasis due to its antioxidant response and cytoplasmic, mitochondrial, and endoplasmic reticulum (ER) protein modulation. Even more, SFN acts as an effective strategy to counteract oxidative stress, apoptosis, and ER stress, among others as seen in different injury models.
View Article and Find Full Text PDFFront Aging Neurosci
December 2021
Background: Ischemic kidney injury is a common clinical condition resulting from transient interruption of the kidney's normal blood flow, leading to oxidative stress, inflammation, and kidney dysfunction. The ketogenic diet (KD), a low-carbohydrate, high-fat diet that stimulates endogenous ketone body production, has potent antioxidant and anti-inflammatory effects in distinct tissues and might thus protect the kidney against ischemia and reperfusion (IR) injury.
Main Methods: Male Wistar rats were fed a KD or a control diet (CD) for three days before analyzing metabolic parameters or testing nephroprotection.
Mitochondria are the central target of ischemic preconditioning and postconditioning cardioprotective strategies, which consist of either the application of brief intermittent ischemia/reperfusion (I/R) cycles or the administration of pharmacological agents. Such strategies reduce cardiac I/R injury by activating protective signaling pathways that prevent the exacerbated production of reactive oxygen/nitrogen species, inhibit opening of mitochondrial permeability transition pore and reduce apoptosis, maintaining normal mitochondrial function. Cardioprotection also involves the activation of mitochondrial quality control (MQC) processes, which replace defective mitochondria or eliminate mitochondrial debris, preserving the structure and function of the network of these organelles, and consequently ensuring homeostasis and survival of cardiomyocytes.
View Article and Find Full Text PDFOur work evaluated cardiac function and mitochondrial bioenergetics parameters in hearts from male Wistar rats subjected to the UUO model during 28 days of progression. We measured markers of kidney damage and inflammation in plasma and renal fibrosis by histological analysis and Western blot. Cardiac function was evaluated by echocardiography and proteins involved in cardiac damage by Western blot.
View Article and Find Full Text PDFPost-translational modifications based on redox reactions "switch on-off" the biological activity of different downstream targets, modifying a myriad of processes and providing an efficient mechanism for signaling regulation in physiological and pathological conditions. Such modifications depend on the generation of redox components, such as reactive oxygen species and nitric oxide. Therefore, as the oxidative or nitrosative milieu prevailing in the reperfused heart is determinant for protective signaling, in this review we defined the impact of redox-based post-translational modifications resulting from either oxidative/nitrosative signaling or oxidative/nitrosative stress that occurs during reperfusion damage.
View Article and Find Full Text PDFMembrane contact sites (MCS) are typically defined as areas of proximity between heterologous or homologous membranes characterized by specific proteins. The study of MCS is considered as an emergent field that shows how crucial organelle interactions are in cell physiology. MCS regulate a myriad of physiological processes such as apoptosis, calcium, and lipid signaling, just to name a few.
View Article and Find Full Text PDFAlthough the elixir of youth remains in the darkness, medical and scientific advances have succeeded in increasing human longevity; however, the predisposition to disease and its high economic cost are raising. Different strategies (e.g.
View Article and Find Full Text PDFNeurotox Res
December 2020
Neuroprotective approaches comprising different mechanisms to counteract the noxious effects of excitotoxicity and oxidative stress need validation and detailed characterization. Although S-allylcysteine (SAC) is a natural compound exhibiting a broad spectrum of protective effects characterized by antioxidant, anti-inflammatory, and neuromodulatory actions, the mechanisms underlying its protective role on neuronal cell damage triggered by early excitotoxic insults remain elusive. In this study, we evaluated if the preconditioning or the post-treatment of isolated rat cortical slices with SAC (100 μM) can ameliorate the toxic effects induced by the excitotoxic metabolite quinolinic acid (QUIN, 100 μM), and whether this protective response involves the early display of specific antioxidant and neuroprotective signals.
View Article and Find Full Text PDF