Publications by authors named "Silva Lerbs-Mache"

The early steps in germination and development of angiosperm seedlings often occur in the dark, inducing a special developmental programme called skoto-morphogenesis. Under these conditions photosynthesis cannot work and all energetic requirements must be fulfilled by mitochondrial metabolization of storage energies. Here, we report the physiological impact of mitochondrial dysfunctions on the skoto-morphogenic programme by using the mutant.

View Article and Find Full Text PDF

Plastids of plant and algae cells are of endosymbiotic origin. They possess their own genome and a sophisticated protein machinery to express it. Studies over the recent years uncovered that the regulation of plastid gene expression is highly complex involving a multiplicity of regulatory protein factors that are mostly imported from the cytosol.

View Article and Find Full Text PDF

Plants possessing dysfunctional plastids due to defects in pigment biosynthesis or translation are known to repress photosynthesis-associated nuclear genes via retrograde signals from the disturbed organelles toward the nucleus. These signals are thought to be essential for proper biogenesis and function of the plastid. Mutants lacking plastid-encoded RNA polymerase-associated proteins (PAPs) display a genetic arrest in eoplast-chloroplast transition leading to an albino phenotype in the light.

View Article and Find Full Text PDF

Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition.

View Article and Find Full Text PDF

Chloroplasts are the sunlight-collecting organelles of photosynthetic eukaryotes that energetically drive the biosphere of our planet. They are the base for all major food webs by providing essential photosynthates to all heterotrophic organisms including humans. Recent research has focused largely on an understanding of the function of these organelles, but knowledge about the biogenesis of chloroplasts is rather limited.

View Article and Find Full Text PDF

The plastid psbB operon harbours 5 genes, psbB, psbT, psbH, petB and petD. A sixth gene, the psbN gene, is located on the opposite DNA strand in the psbT/psbH intergenic region. Its transcription produces antisense RNA to a large part of the psbB pentacistronic mRNA.

View Article and Find Full Text PDF

In this work, we dissect the physiological role of the transient photosynthetic stage observed in developing seeds of Arabidopsis thaliana. By combining biochemical and biophysical approaches, we demonstrate that despite similar features of the photosynthetic apparatus, light absorption, chloroplast morphology and electron transport are modified in green developing seeds, as a possible response to the peculiar light environment experienced by them as a result of sunlight filtration by the pericarp. In particular, enhanced exposure to far-red light, which mainly excites photosystem I, largely enhances cyclic electron flow around this complex at the expenses of oxygen evolution.

View Article and Find Full Text PDF

Chloroplasts are photosynthetic cell organelles which have evolved from endosymbiosis of the cyanobacterial ancestor. In chloroplasts, genes are still organized into transcriptional units as in bacteria but the corresponding poly-cistronic mRNAs undergo complex processing events, including inter-genic cleavage and 5' and 3' end-definition. The current model for processing proposes that the 3' end of the upstream cistron transcripts and the 5' end of the downstream cistron transcripts are defined by the same RNA-binding protein and overlap at the level of the protein-binding site.

View Article and Find Full Text PDF

Arabidopsis seed formation is coupled with two plastid differentiation processes. Chloroplast formation starts during embryogenesis and ends with the maturation phase. It is followed by chloroplast dedifferentiation/degeneration that starts at the end of the maturation phase and leads to the presence of small non-photosynthetic plastids in dry seeds.

View Article and Find Full Text PDF

The ATP synthase is a ubiquitous enzyme which is found in bacteria and eukaryotic organelles. It is essential in the photosynthetic and respiratory processes, by transforming the electrochemical proton gradient into ATP energy via proton transport across the membranes. In Escherichia coli, the atp genes coding for the subunits of the ATP synthase enzyme are grouped in the same transcriptional unit, while in higher plants the plastid atp genes are organized into a large (atpI/H/F/A) and a small (atpB/E) atp operon.

View Article and Find Full Text PDF

Seed plants and algae have two distinct FtsZ protein families, FtsZ1 and FtsZ2, involved in plastid division. Distinctively, seed plants and mosses contain two FtsZ2 family members (FtsZ2-1 and FtsZ2-2) thus raising the question of the role of these FtsZ2 paralogs in plants. We show that both FtsZ2 paralogs, in addition to being present in the stroma, are associated with the thylakoid membranes and that association is developmentally regulated.

View Article and Find Full Text PDF

The plastid psbB operon is composed of the psbB, psbT, psbH, petB and petD genes. The psbN gene is located in the intergenic region between psbT and psbH on the opposite DNA strand. Transcription of psbN is under control of sigma factor 3 (SIG3) and psbN read-through transcription produces antisense RNA to psbT mRNA.

View Article and Find Full Text PDF

Plastid gene expression is rather complex. Transcription is performed by three different RNA polymerases, two of them are nucleus-encoded, monomeric, of the phage-type (named RPOTp and RPOTmp) and one of them is plastid-encoded, multimeric, of the eubacterial-type (named PEP). The activity of the eubacterial-type RNA polymerase is regulated by up to six nucleus-encoded transcription initiation factors of the sigma-type.

View Article and Find Full Text PDF

The chloroplast protein CSP41a both binds and cleaves RNA, particularly in stem-loops, and has been found associated with ribosomes. A related protein, CSP41b, co-purifies with CSP41a, ribosomes, and the plastid-encoded RNA polymerase. Here we show that Arabidopsis CSP41a and CSP41b interact in vivo, and that a csp41b null mutant becomes depleted of CSP41a in mature leaves, correlating with a pale green phenotype and reduced accumulation of the ATP synthase and cytochrome b ( 6 )/f complexes.

View Article and Find Full Text PDF
Article Synopsis
  • The plastid genome in dicotyledonous plants uses three types of RNA polymerases for transcription, including PEP and two phage-like enzymes, RPOTp and RPOTmp.
  • RPOTp is crucial for chloroplast transcription and cell growth, while RPOTmp assists with rrn operon transcription during seed germination and later developmental stages.
  • Research has identified two proteins that interact with RPOTmp, one of which is a thylakoid membrane protein that keeps RPOTmp anchored in the chloroplast, suggesting that light influences RPOTmp's activity by affecting its membrane association.
View Article and Find Full Text PDF

The plastid genome of higher plants is transcribed by two different types of RNA polymerases named nucleus encoded RNA polymerase (NEP) and plastid encoded RNA polymerase. Plastid encoded RNA polymerase is a multimeric enzyme comparable to eubacterial RNA polymerases. NEP enzymes represent a small family of monomeric phage-type RNA polymerases.

View Article and Find Full Text PDF

FtsZ is a key protein involved in bacterial and organellar division. Bacteria have only one ftsZ gene, while chlorophytes (higher plants and green alga) have two distinct FtsZ gene families, named FtsZ1 and FtsZ2. This raises the question of why chloroplasts in these organisms need distinct FtsZ proteins to divide.

View Article and Find Full Text PDF

We have investigated the function of one of the six plastid sigma-like transcription factors, sigma 3 (SIG3), by analysing two different Arabidopsis T-DNA insertion lines having disrupted SIG3 genes. Hybridization of wild-type and sig3 plant RNA to a plastid specific microarray revealed a strong reduction of the plastid psbN mRNA. The microarray result has been confirmed by northern blot analysis.

View Article and Find Full Text PDF

We used quantitative phase tomography with synchrotron radiation to elucidate the 3D structure of Arabidopsis seeds in their native state. The cells are clearly distinguished, and their internal structure is revealed through local variations in electron density. We visualized a 3D network of intercellular air space that might allow immediate gas exchange for energy supply during germination and/or serve for rapid water uptake and distribution during imbibition.

View Article and Find Full Text PDF

The plastid genome is transcribed by three different RNA polymerases, one is called plastid-encoded RNA polymerase (PEP) and two are called nucleus-encoded RNA polymerases (NEPs). PEP transcribes preferentially photosynthesis-related genes in mature chloroplasts while NEP transcribes preferentially housekeeping genes during early phases of plant development, and it was generally thought that during plastid differentiation the building up of the NEP transcription system precedes the building up of the PEP transcription system. We have now analyzed in detail the establishment of the two different transcription systems, NEP and PEP, during germination and early seedling development on the mRNA and protein level.

View Article and Find Full Text PDF

Plastid transformation technologies have developed rapidly over the last few years, reflecting their value in the study of the principal mechanisms of plastid gene expression and commercial interest in using plastids as bioreactors. Application of this technology is still limited by the difficulty of obtaining regulated, selective expression of plastid transgenes. The plastid genome is transcribed by two different types of RNA polymerase.

View Article and Find Full Text PDF

Plant plastids contain a circular genome of approximately 150 kb organized into approximately 35 transcription units. The plastid genome is organized into nucleoids and attached to plastid membranes. This relatively small genome is transcribed by at least two different RNA polymerases, one being of the prokaryotic type and plastid-encoded (PEP), the other one being of the phage-type and nucleus-encoded (NEP).

View Article and Find Full Text PDF

The complexity of the plastid transcriptional apparatus (two or three different RNA polymerases and numerous regulatory proteins) makes it very difficult to attribute specific function(s) to its individual components. We have characterized an Arabidopsis T-DNA insertion line disrupting the nuclear gene coding for one of the six plastid sigma factors (SIG4) that regulate the activity of the plastid-encoded RNA polymerase PEP. This mutant shows a specific diminution of transcription of the plastid ndhF gene, coding for a subunit of the plastid NDH [NAD(P)H dehydrogenase] complex.

View Article and Find Full Text PDF

Recent genetic and biochemical studies have revealed the existence in plants of a fourth RNA polymerase, RNAPIV, which mediates siRNA accumulation and DNA methylation-dependent silencing of endogenous repeated sequences. Here, we show that Arabidopsis expresses, in fact, two evolutionarily related forms of RNAPIV, hereafter referred to as RNAPIVa and RNAPIVb. These two forms contain the same second-largest subunit (NRPD2), but differ at least by their largest subunit, termed NRPD1a and NRPD1b.

View Article and Find Full Text PDF

Plastid division in higher plants is morphologically similar to bacterial cell division, with a process termed binary fission involving constriction of the envelope membranes. FtsZ proteins involved in bacterial division are also present in higher plants, in which the ftsZ genes belong to two distinct families: ftsZ1 and ftsZ2. However, the roles of the corresponding proteins FtsZ1 and FtsZ2 in plastid division have not been determined.

View Article and Find Full Text PDF