This paper focuses on simultaneous estimation of states and faults for a linear time-invariant (LTI) system observed by sensor networks. Each sensor node is equipped with an observer, which uses only local measurements and local interaction with neighbors for monitoring. The observability of said observer is analyzed where non-local observability of a sensor node is required in terms of the system state and faults.
View Article and Find Full Text PDFPlantation cultivation plays an important role in improving terrestrial ecosystem functions and services. Understanding the water-use patterns of major afforestation species is vital for formulating ecological restoration strategies and predicting the response of plantation to climate change. However, the impacts and drivers of forest types on water-use patterns of key tree species are poorly understood.
View Article and Find Full Text PDFSci Total Environ
January 2023
Losses of C and N from the forest floor and top 20-cm of soil were estimated following separate severe wildfires at two Long-Term Soil Productivity sites in the Sierra Nevada of California, USA. Experimental treatments applied 20 years prior to the wildfires included factorial combinations of 1) organic matter (OM) removal following clear-cut harvesting (SO, stem only harvest, WTH, whole-tree harvest, and WTH + FF, WTH plus the forest floor removal), 2) soil compaction (three levels of intensity), and 3) with and without understory vegetation control. Wildfires caused complete losses of the forest floor in all treatments and also oxidized varying portions of OM in the topsoil.
View Article and Find Full Text PDFPhotodegradation is a new approach for the removal of pentachlorophenol (PCP). Photooxidation degradation (using hydroxyl radicals) exhibits better performance to remove PCP than photoreduction degradation, but the former will lead to an increase in the production of toxic by-products such as tetrachloro-1,4-benzoquinone (TCBQ). Thus, a new strategy is required to enhance PCP photodegradation and simultaneously inhibit toxic intermediates production.
View Article and Find Full Text PDFPlant carbon (C) assimilation is expected to nonlinearly increase with continuously increasing nitrogen (N) deposition, causing a N saturation threshold for productivity. However, the response of plant productivity to N deposition rates and further the N saturation threshold still await comprehensive quantization for forest ecosystem. Here, we tested the effect of N addition on aboveground net primary productivity (ANPP) of three-year old Chinese fir (Cunninghamia lanceolata) trees by adding N at 0, 5.
View Article and Find Full Text PDFChinese forests cover most of the representative forest types in the Northern Hemisphere and function as a large carbon (C) sink in the global C cycle. The availability of long-term C dynamics observations is key to evaluating and understanding C sequestration of these forests. The Chinese Ecosystem Research Network has conducted normalized and systematic monitoring of the soil-biology-atmosphere-water cycle in Chinese forests since 2000.
View Article and Find Full Text PDFDeuterium (D) and oxygen-18 (O) are common environmental tracers in water. Understanding the isotopic compositions of precipitation is necessary for further studies on local and global water cycling processes. To reveal the mechanism of isotopic compositions of precipitation in subtropical monsoon region in response to environmental changes, we collected 49 precipitation samples and recorded related environmental factors from May 2017 to August 2019 in Huitong field station of Chinese Academy of Sciences in Hunan Province.
View Article and Find Full Text PDFSoil organic matter (SOM) mineralization represents one of the largest fluxes in the global carbon cycle. Numerous studies have shown that soil organic carbon decomposition was largely changed owing to the addition of litter, however very few studies have focused on the role of plant organs in the priming effects (PEs). Here, we studied the effects of different Pinus massoniana organs (fresh leaf, leaf litter, twigs, absorptive fine roots, and transport fine roots) on C4 soil respiration by applying the 13C isotopic natural abundance method.
View Article and Find Full Text PDFIt is critical to accurately estimate carbon (C) turnover time as it dominates the uncertainty in ecosystem C sinks and their response to future climate change. In the absence of direct observations of ecosystem C losses, C turnover times are commonly estimated under the steady state assumption (SSA), which has been applied across a large range of temporal and spatial scales including many at which the validity of the assumption is likely to be violated. However, the errors associated with improperly applying SSA to estimate C turnover time and its covariance with climate as well as ecosystem C sequestrations have yet to be fully quantified.
View Article and Find Full Text PDFThe conversion from natural forest to plantation has been widely applied, with consequences on ecosystem carbon pool. The experimental results of changes of soil carbon stocks after forest conversion are often contradictory. Moreover, the recovery time of soil carbon stocks after forest conversion varies among different sites.
View Article and Find Full Text PDFCanopies in evergreen coniferous plantations often consist of various-aged needles. However, the effect of needle age on the photosynthetic responses to thinning remains ambiguous. Photosynthetic responses of different-aged needles to thinning were investigated in a Chinese fir (Cunninghamia lanceolata) plantation.
View Article and Find Full Text PDFNitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.
View Article and Find Full Text PDFPlants may affect the performance of neighboring plants either positively or negatively through interspecific and intraspecific interactions. Productivity of mixed-species systems is ultimately the net result of positive and negative interactions among the component species. Despite increasing knowledge of positive interactions occurring in mixed-species tree systems, relatively little is known about the mechanisms underlying such interactions.
View Article and Find Full Text PDFThe availabilities of carbon (C) and nitrogen (N) in soil play an important role in soil carbon dioxide (CO2) emission. However, the variation in the soil respiration (Rs) and response of microbial community to the combined changes in belowground C and N inputs in forest ecosystems are not yet fully understood. Stem girdling and N addition were performed in this study to evaluate the effects of C supply and N availability on Rs and soil microbial community in a subtropical forest.
View Article and Find Full Text PDFPhi coefficient directly depends on the frequencies of occurrence of organisms and has been widely used in vegetation ecology to analyse the associations of organisms with site groups, providing a characterization of ecological preference, but its application in soil ecology remains rare. Based on a single field experiment, this study assessed the applicability of phi coefficient in indicating the habitat preferences of soil fauna, through comparing phi coefficient-induced results with those of ordination methods in charactering soil fauna-habitat(factors) relationships. Eight different habitats of soil fauna were implemented by reciprocal transfer of defaunated soil cores between two types of subtropical forests.
View Article and Find Full Text PDFNine new diterpenes named lanceolatanol hydroperoxide (1), epilanceolatanol hydroperoxide (2), lanceolatanoic acid hydroperoxide (3), epilanceolatanoic acid hydroperoxide (4), lanceolatanol (5), lanceolatanoic acid (6), 11-acetoxylanceolatanoic acid (7), 11-acetoxylanceolatanoic acid methyl ester (8) and epoxyhinokiol (13) were characterized from the leaves of plantation-grown Cunninghamia lanceolata along with twelve known compounds. The compounds were evaluated for their growth inhibitory activities against the human prostate cell line (PC-3).
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
September 2013
By using 13C stable isotope tracer technique, this paper studied the effects of Chinese fir litter addition on the soil organic carbon (SOC) decomposition, microbial biomass carbon, and dissolved organic carbon in 0-5 cm and 40-45 cm layers. The decomposition rate of SOC in 40-45 cm layer was significantly lower than that in 0-5 cm layer, but the priming effect induced by the Chinese fir litter addition showed an opposite trend. The Chinese fir litter addition increased the soil total microbial biomass carbon and the microbial biomass carbon derived from native soil significantly, but had less effects on the soil dissolved organic carbon.
View Article and Find Full Text PDFThere is evidence that climate change induced tree mortalities in boreal and temperate forests and increased forest turnover rates (both mortality and recruitment rates) in Amazon forests. However, no study has examined China's tropical and subtropical evergreen broadleaved forests (TEBF) that cover >26% of China's terrestrial land. The sustainability of this biome is vital to the maintenance of local ecosystem services (e.
View Article and Find Full Text PDFBackground: Extensive studies have been conducted to evaluate the effect of external organic Carbon on native soil organic carbon (SOC) decomposition. However, the direction and extent of this effect reported by different authors is inconsistent.
Objective: The objective was to provide a synthesis of existing data that comprehensively and quantitatively evaluates how the soil chemical properties and incubation conditions interact with additional external organic C to affect the native SOC decomposition.
Ying Yong Sheng Tai Xue Bao
August 2012
By using dilution plate, fumigation extraction, and phospholipid fatty acid (PLFA) methods, this paper studied the quantities of soil microbial populations and the characteristics of soil microbial community structure in a Chinese fir (Cunninghamia lanceolata) plantation converted from an evergreen broadleaved forest. The results showed that, during the vegetation change from evergreen broadleaved forest to Chinese fir plantation, the microbial biomass carbon and the quantities of culturable bacteria and actinomyces were decreased. The total PLFAs, bacterial PLFAs, and fungi PLFAs in the woodland soil from Chinese fir plantation were decreased by 49.
View Article and Find Full Text PDFThe nitrogen (N) deposition fluxes were investigated in eight typical forest ecosystems along the North-South Transect of Eastern China (NSTEC; based on the ChinaFLUX network) by ion-exchange resin (IER) columns from May 2008 to April 2009. Our results demonstrated that the method of IER columns was both labor cost saving and reliable for measuring dissolved inorganic nitrogen (DIN) deposition at the remote forest stations. The deposition of DIN in the throughfall ranged from 1.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2011
A short-term understory vegetation removal experiment was conducted at three experimental sites of Chinese fir (Cunninghamia lanceolata) plantation in Huitong of Hunan Province, South-central China to examine the short-term effects of the absence of understory vegetation on litter decomposition. In the plantation, the standing stock of the litter in L layer (un-decomposed litter), F layer (semi-decomposed litter), and H layer (decomposed litter) under understory intact condition was (123.7 +/- 46.
View Article and Find Full Text PDFThis paper presented a new and simple assessment method for the quality of ecological monitoring data. This method theorized the associations between the data reliability as an ordinal variable with different number of classes and the data sources such as natural main ecological processes, secondary ecological processes, and extraneous and exotic processes, and offered a new data quality index to estimate the quality of the whole dataset by using the reasonableness ratio of observations. The assessment results provided the reliability class of each dataset, good explanations for outlier (or error data) flagging decisions, and quality value of the whole dataset.
View Article and Find Full Text PDFBy using indicator species analysis (ISA) method, this paper studied the feasibility of using indicator species to reflect the responses of species diversity and community composition of subtropical forests in Huitong of China to forest management. Ninety-four significant indicator species from 357 understory species were identified, and a new indicator species dataset (community level) was constructed to examine the association between indicator species dataset and original community dataset, and to evaluate the predictive potential of indicator species in reflecting forest management effect. There existed a strong association between the two datasets (Mantel r = 0.
View Article and Find Full Text PDF