Background: The deciphering of cellular networks to determine susceptibility to infection by HIV or the related simian immunodeficiency virus (SIV) is a major challenge in infection biology.
Results: Here, we have compared gene expression profiles of a human CD4+ T cell line at 24 h after infection with a cell line of the same origin permanently releasing SIVmac. A new knowledge-based-network approach (Inter-Chain-Finder, ICF) has been used to identify sub-networks associated with cell survival of a chronically SIV-infected T cell line.
Brief Funct Genomic Proteomic
March 2006
The conventional string-based bioinformatic methods of genomic sequence analysis are often insufficient to identify DNA regulatory elements, since many of these do not have a recognizable motif. Even in case a sequence pattern is known to be associated with an element it may only partially mediate its function. This suggests that properties not correlated with the details of base sequence contribute to regulation.
View Article and Find Full Text PDFScaffold or matrix-attachment regions (S/MARs) are thought to be involved in the organization of eukaryotic chromosomes and in the regulation of several DNA functions. Their characteristics are conserved between plants and humans, and a variety of biological activities have been associated with them. The identification of S/MARs within genomic sequences has proved to be unexpectedly difficult, as they do not appear to have consensus sequences or sequence motifs associated with them.
View Article and Find Full Text PDFA functional interaction between poly(ADP-ribose) polymerase-1 (PARP-1) and lamin B has recently been proposed by nuclear fractionation, crosslinking, and immunoprecipitation experiments. Here we use fluorescence microscopy to verify and extend these findings. We analyze nuclear halo preparations by fluorescence in situ immuno staining (FISIS), which shares attributes with traditional nuclear fractionation techniques, and by confocal laser scanning microscopy (CLSM).
View Article and Find Full Text PDFEukaryotic DNA is organized into chromatin domains that regulate gene expression and chromosome behavior. Insulators and/or scaffold-matrix attachment regions (S/MARs) mark the boundaries of these chromatin domains where they delimit enhancing and silencing effects from the outside. By recombinase-mediated cassette exchange (RMCE), we were able to compare these two types of bordering elements at a number of predefined genomic loci.
View Article and Find Full Text PDF