Pharmaceuticals such as carbamazepine (CBZ), sulfamethoxazole (SMX) and diclofenac (DCF) are detected at a high frequency in the aquatic environment. The fates of these compounds in bank filtration (BF), a nature-based water treatment system, have been extensively studied, mainly in batch and laboratory column studies. This study, for the first time, investigated the fates of CBZ, SMX and DCF in a large recirculated mesocosm with a pond and subsequent BF.
View Article and Find Full Text PDFThe occurrence of potentially persistent and mobile (PM) organic micropollutants (OMP) in the aquatic environment is recognized as a severe threat to water resources and drinking water suppliers. The current study investigated long-term fate (persistency and bio-transformation) of several emerging contaminants in a simulated bank filtration (BF) for the first time. In parallel, four sand column systems were operated with groundwater and continuously spiked with an average concentration of 1 μg/L for 24 OMP.
View Article and Find Full Text PDFWhere surface-functionalized engineered nanoparticles (NP) occur in drinking water catchments, understanding their transport within and between environmental compartments such as surface water and groundwater is crucial for risk assessment of drinking water resources. The transport of NP is mainly controlled by (i) their surface properties, (ii) water chemistry, and (iii) surface properties of the stationary phase. Therefore, functionalization of NP surfaces by organic coatings may change their fate in the environment.
View Article and Find Full Text PDFEngineered nanomaterials (ENM) such as nano-sized cerium dioxide (CeO) are increasingly applied. Meanwhile, concerns on their environmental fate are rising. Understanding the fate of ENM within and between environmental compartments such as surface water and groundwater is crucial for the protection of drinking water resources.
View Article and Find Full Text PDF