J Biomed Mater Res B Appl Biomater
February 2010
Epidural adhesion formation is believed to be a central governing factor in the prevalence of pain after spinal surgery and is regarded as being the primary instigator of neural tethering, leading to complications during revision surgery. In this study, we assess the effectiveness and safety of fibrin sealant supplemented with tributyrin, termed Medicated Adhesion Barrier (MAB), as an alternative means of reducing the incidence of posterior spinal epidural adhesion formation. Laminectomy defects in sheep were treated with MAB, fibrin sealant alone, ADCONGel, or remained untreated.
View Article and Find Full Text PDFWe describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines.
View Article and Find Full Text PDFRegenerative medicine requires innovative therapeutic designs to accommodate high morphogen concentrations in local depots, provide their sustained presence, and enhance cellular invasion and directed differentiation. Here we present an example for inducing local bone regeneration with a matrix-bound engineered active fragment of human parathyroid hormone (PTH(1-34)), linked to a transglutaminase substrate for binding to fibrin as a delivery and cell-invasion matrix with an intervening plasmin-sensitive link (TGplPTH(1-34)). The precursor form displays very little activity and signaling to osteoblasts, whereas the plasmin cleavage product, as it would be induced under the enzymatic influence of cells remodeling the matrix, was highly active.
View Article and Find Full Text PDFCD8(+) cytotoxic T lymphocytes (CTL) can recognize and kill target cells expressing only a few cognate major histocompatibility complex (MHC) I-peptide complexes. This high sensitivity requires efficient scanning of a vast number of highly diverse MHC I-peptide complexes by the T cell receptor in the contact site of transient conjugates formed mainly by nonspecific interactions of ICAM-1 and LFA-1. Tracking of single H-2K(d) molecules loaded with fluorescent peptides on target cells and nascent conjugates with CTL showed dynamic transitions between states of free diffusion and immobility.
View Article and Find Full Text PDFFetal bone cells were shown to have an interesting potential for therapeutic use in bone tissue engineering due to their rapid growth rate and their ability to differentiate into mature osteoblasts in vitro. We describe hereafter their capability to promote bone repair in vivo when combined with porous scaffolds based on poly(l-lactic acid) (PLA) obtained by supercritical gas foaming and reinforced with 5 wt.% beta-tricalcium phosphate (TCP).
View Article and Find Full Text PDFBioresorbable scaffolds made of poly(L-lactic acid) (PLA) obtained by supercritical gas foaming were recently described as suitable for tissue engineering, portraying biocompatibility with primary osteoblasts in vitro and interesting mechanical properties when reinforced with ceramics. The behavior of such constructs remained to be evaluated in vivo and therefore the present study was undertaken to compare different PLA/ceramic composite scaffolds obtained by supercritical gas foaming in a critical size defect craniotomy model in Sprague-Dawley rats. The host-tissue reaction to the implants was evaluated semiquantitatively and similar tendencies were noted for all graft substitutes: initially highly reactive but decreasing with time implanted.
View Article and Find Full Text PDFSoluble MHC-peptide (pMHC) complexes, commonly referred to as tetramers, are widely used to enumerate and to isolate Ag-specific CD8(+) CTL. It has been noted that such complexes, as well as microsphere- or cell-associated pMHC molecules compromise the functional integrity of CTL, e.g.
View Article and Find Full Text PDFCD8+ cytotoxic T lymphocyte (CTL) can recognize and kill target cells that express only a few cognate major histocompatibility complex class I-peptide (pMHC) complexes. To better understand the molecular basis of this sensitive recognition process, we studied dimeric pMHC complexes containing linkers of different lengths. Although dimers containing short (10-30-A) linkers efficiently bound to and triggered intracellular calcium mobilization and phosphorylation in cloned CTL, dimers containing long linkers (> or = 80 A) did not.
View Article and Find Full Text PDFThe insulin-like growth factor binding proteins (IGFBPs) play a major role in the regulation of the effects and the bioavailability of the insulin-like growth factors (IGFs). IGFs are released from IGFBP-IGF complexes by proteolysis of IGFBPs generating fragments with reduced ligand-binding properties. To identify naturally occurring fragments of IGFBP-2, a peptide library generated from human hemofiltrate was immunologically screened.
View Article and Find Full Text PDFWe envision the use of human fetal bone cells for engineered regeneration of adult skeletal tissue. A description of their cellular function is then necessary. To our knowledge, there is no description of human primary fetal bone cells treated with differentiation factors.
View Article and Find Full Text PDFProteolysis of insulin-like growth factor binding proteins (IGFBPs), the major carrier of insulin-like growth factors (IGFs) in the circulation, is an essential mechanism to regulate the bioavailability and half-live of IGFs. Screening for peptides in human hemofiltrate, stimulating the survival of PC-12 cells, resulted in the isolation of C-terminal IGFBP-2 fragments and intact IGF-II co-eluting during the chromatographic purification procedure. The IGFBP-2 fragments exhibited molecular masses of 12.
View Article and Find Full Text PDF