Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogen Pseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI against P.
View Article and Find Full Text PDFPlants have benefited from interactions with symbionts for coping with challenging environments since the colonisation of land. The mechanisms of symbiont-mediated beneficial effects and similarities and differences to pathogen strategies are mostly unknown. Here, we use 106 (effector-) proteins, secreted by the symbiont Serendipita indica (Si) to modulate host physiology, to map interactions with Arabidopsis thaliana host proteins.
View Article and Find Full Text PDFBoron has essential roles in plant growth and development. BOR proteins are key in the active uptake and distribution of boron, and regulation of intracellular boron concentrations. However, their mechanism of action remains poorly studied.
View Article and Find Full Text PDFThe Mediator complex controls transcription of most eukaryotic genes with individual subunits required for the control of particular gene regulons in response to various perturbations. In this study, we reveal the roles of the plant Mediator subunits MED16, MED14, and MED2 in regulating transcription in response to the phytohormone abscisic acid (ABA) and we determine which elements are under their control. Using synthetic promoter reporters we established an effective system for testing relationships between subunits and specific acting motifs in protoplasts.
View Article and Find Full Text PDFPhytohormones mediate most diverse processes in plants, ranging from organ development to immune responses. Receptor protein complexes perceive changes in intracellular phytohormone levels and trigger a signaling cascade to effectuate downstream responses. The in planta analysis of elements involved in phytohormone signaling can be achieved through transient expression in mesophyll protoplasts, which are a fast and versatile alternative to generating plant lines that stably express a transgene.
View Article and Find Full Text PDFPlants interpret their immediate environment through perception of small molecules. Microbe-associated molecular patterns (MAMPs) such as flagellin and chitin are likely to be more abundant in the rhizosphere than plant-derived damage-associated molecular patterns (DAMPs). We investigated how the Arabidopsis thaliana root interprets MAMPs and DAMPs as danger signals.
View Article and Find Full Text PDFIn the last decades, the plant innate immune responses against pathogens have been extensively studied, while biocontrol interactions between soilborne fungal pathogens and their hosts have received much less attention. Treatment of Arabidopsis thaliana with the nonpathogenic bacterium Paenibacillus alvei K165 was shown previously to protect against Verticillium dahliae by triggering induced systemic resistance (ISR). In the present study, we evaluated the involvement of the innate immune response in the K165-mediated protection of Arabidopsis against V.
View Article and Find Full Text PDFReactive oxygen species (ROS) have been studied for their role in plant development as well as in plant immunity. ROS were consistently observed to accumulate in the plant after the perception of pathogens and microbes and over the years, ROS were postulated to be an integral part of the defence response of the plant. In this article we will focus on recent findings about ROS involved in the interaction of plants with pathogenic fungi.
View Article and Find Full Text PDFBackground: In a previous study we have shown that wounding of Arabidopsis thaliana leaves induces a strong and transient immunity to Botrytis cinerea, the causal agent of grey mould. Reactive oxygen species (ROS) are formed within minutes after wounding and are required for wound-induced resistance to B. cinerea.
View Article and Find Full Text PDFThe three proline transporters of Arabidopsis thaliana (AtProTs) transport the compatible solutes proline and glycine betaine and the stress-induced compound γ-aminobutyric acid when expressed in heterologous systems. The aim of the present study was to show transport and physiological relevance of these three AtProTs in planta. Using single, double, and triple knockout mutants and AtProT-overexpressing lines, proline content, growth on proline, transport of radiolabelled betaine, and expression of AtProT genes and enzymes of proline metabolism were analysed.
View Article and Find Full Text PDFProline fulfils diverse functions in plants. As amino acid it is a structural component of proteins, but it also plays a role as compatible solute under environmental stress conditions. Proline metabolism involves several subcellular compartments and contributes to the redox balance of the cell.
View Article and Find Full Text PDF