Publications by authors named "Silke John"

AXIN proteins are major components of the β-catenin destruction complex or degradasome, which limits β-catenin nuclear translocation and Wnt signalling activation at steady state. Schmidt et al. performed quantitative analysis of cellular AXIN protein levels in human colorectal cancer cells and revealed that AXIN2 plays a non-redundant role in regulating the total AXIN pool and Wnt/β-catenin signalling activity.

View Article and Find Full Text PDF

Small molecule inhibitors of apoptosis proteins (IAPs) antagonists, known as Smac mimetics (SMs), activate non-canonical NF-κB and sensitize cancer cells to TNF-induced cell death. SMs are currently in phase III clinical trials for head and neck squamous cell carcinoma (HNSCC) after promising phase II trials. To explore the utility of SMs in oral squamous cell carcinoma (OSCC), we tested nine human OSCC cell lines and correlated SM sensitivity with both IAP mutation and expression levels.

View Article and Find Full Text PDF
Article Synopsis
  • Toxic epidermal necrolysis (TEN) is a severe and potentially deadly skin reaction caused by common medications, featuring rapid skin detachment due to cell death, with no effective treatments currently available.
  • Researchers used deep visual proteomics to analyze skin biopsies from TEN patients, identifying significant changes in proteins related to type I and II interferon signaling and activated phosphorylated STAT1, which are believed to drive the condition.
  • The study found that using JAK inhibitors, like tofacitinib and baricitinib, effectively reduced skin damage in both mouse models and human patients with TEN, indicating these pathways could be targeted for potential new treatments.
View Article and Find Full Text PDF
Article Synopsis
  • Tumours evade immune responses, making cancer immunotherapies less effective, mainly through loss of antigen presentation and cytokine signaling pathways.
  • A genome-wide CRISPR/Cas9 screen identified that loss of core-binding factor subunit beta (CBFβ) increases tumour resistance to CAR-T cells, which do not rely on traditional antigen presentation.
  • The study found that intracellular zinc levels influence tumour cell susceptibility to T cell killing, suggesting that targeting zinc could enhance the effectiveness of cancer therapies in overcoming immune evasion.
View Article and Find Full Text PDF

Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues.

View Article and Find Full Text PDF
Article Synopsis
  • The linear ubiquitin assembly complex (LUBAC), made up of HOIP, HOIL-1, and SHARPIN, is crucial for immune responses, with deficiencies leading to severe issues like immunodeficiency and autoinflammation.
  • Two individuals with SHARPIN deficiency exhibited autoinflammatory symptoms but did not have the expected skin problems seen in other cases, and their cells showed reduced immune responses.
  • Treatment with anti-TNF therapies successfully resolved the autoinflammatory symptoms in one case, highlighting LUBAC's important role in managing immune cell death and maintaining immune balance in humans.
View Article and Find Full Text PDF

Caspase-8 activity is required to inhibit necroptosis during embryogenesis in mice. In vitro studies have suggested that caspase-8 directly cleaves RIPK1, CYLD and the key necroptotic effector kinase RIPK3 to repress necroptosis. However, recent studies have shown that mice expressing uncleavable RIPK1 die during embryogenesis due to excessive apoptosis, while uncleavable CYLD mice are viable.

View Article and Find Full Text PDF

Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis - a largely immunologically silent form of cell death - there is growing interest in harnessing immunogenic forms of cell death such as necroptosis.

View Article and Find Full Text PDF

Skin inflammation is a complex process implicated in various dermatological disorders. The chronic proliferative dermatitis (cpd) phenotype driven by the cpd mutation (cpdm) in the Sharpin gene is characterized by dermal inflammation and epidermal abnormalities. Tumour necrosis factor (TNF) and caspase-8-driven cell death causes the pathogenesis of mice; however, the role of mind bomb 2 (MIB2), a pro-survival E3 ubiquitin ligase involved in TNF signaling, in skin inflammation remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • cIAPs are proteins that play a crucial role in regulating TNF signaling by modifying RIPK1, and mutations in cIAP1/2 lead to severe embryonic development issues in mice due to apoptosis.
  • While a modified version of RIPK1 can rescue embryonic development, its absence in cIAP1/2 mice results in inflammation and early death after weaning.
  • The study reveals that cIAPs also control TNFR1-mediated toxicity independently of RIPK1 and RIPK3, providing new insights into TNF signaling and creating a mouse model to help evaluate treatments involving TNF inhibitors.
View Article and Find Full Text PDF

Across the globe, 2-3% of humans carry the p.Ser132Pro single nucleotide polymorphism in MLKL, the terminal effector protein of the inflammatory form of programmed cell death, necroptosis. Here we show that this substitution confers a gain in necroptotic function in human cells, with more rapid accumulation of activated MLKL in biological membranes and MLKL overriding pharmacological and endogenous inhibition of MLKL.

View Article and Find Full Text PDF

Oral and intestinal mucositis (OIM) are debilitating inflammatory diseases initiated by oxidative stress, resulting in epithelial cell death and are frequently observed in cancer patients undergoing chemo-radiotherapy. There are currently few preventative strategies for this debilitating condition. Therefore, the development of a safe and effective mucositis mitigating strategy is an unmet medical need.

View Article and Find Full Text PDF

Necroptosis is a mode of programmed, lytic cell death that is executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following activation by the upstream kinases, receptor-interacting serine/threonine protein kinase (RIPK)-1 and RIPK3. Dysregulated necroptosis has been implicated in the pathophysiology of many human diseases, including inflammatory and degenerative conditions, infectious diseases and cancers, provoking interest in pharmacological targeting of the pathway. To identify small molecules impacting on the necroptotic machinery, we performed a phenotypic screen using a mouse cell line expressing an MLKL mutant that kills cells in the absence of upstream death or pathogen detector receptor activation.

View Article and Find Full Text PDF

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions.

View Article and Find Full Text PDF

The cytokine TNF has essential roles in immune defence against diverse pathogens and, when its expression is deregulated, it can drive severe inflammatory disease. The control of TNF levels is therefore critical for normal functioning of the immune system and health. We have identified GPATCH2 as a putative repressor of Tnf expression acting post-transcriptionally through the TNF 3' UTR in a CRISPR screen for novel regulators of TNF.

View Article and Find Full Text PDF

MLKL and RIPK3 are the core signaling proteins of the inflammatory cell death pathway, necroptosis, which is a known mediator and modifier of human disease. Necroptosis has been implicated in the progression of disease in almost every physiological system and recent reports suggest a role for necroptosis in aging. Here, we present the first comprehensive analysis of age-related histopathological and immunological phenotypes in a cohort of Mlkl and Ripk3 mice on a congenic C57BL/6 J genetic background.

View Article and Find Full Text PDF

Genetic lesions in X-linked inhibitor of apoptosis (XIAP) pre-dispose humans to cell death-associated inflammatory diseases, although the underlying mechanisms remain unclear. Here, we report that two patients with XIAP deficiency-associated inflammatory bowel disease display increased inflammatory IL-1β maturation as well as cell death-associated caspase-8 and Gasdermin D (GSDMD) processing in diseased tissue, which is reduced upon patient treatment. Loss of XIAP leads to caspase-8-driven cell death and bioactive IL-1β release that is only abrogated by combined deletion of the apoptotic and pyroptotic cell death machinery.

View Article and Find Full Text PDF

The RING-between-RING (RBR) E3 ubiquitin ligase family in humans comprises 14 members and is defined by a two-step catalytic mechanism in which ubiquitin is first transferred from an E2 ubiquitin-conjugating enzyme to the RBR active site and then to the substrate. To define the core features of this catalytic mechanism, we here structurally and biochemically characterise the two RBRs HOIL-1 and RNF216. Crystal structures of both enzymes in their RBR/E2-Ub/Ub transthiolation complexes capturing the first catalytic step, together with complementary functional experiments, reveal the defining features of the RBR catalytic mechanism.

View Article and Find Full Text PDF

The Pattern Of Invasion (POI) of tumor cells into adjacent normal tissues clinically predicts postoperative tumor metastasis/recurrence of early oral squamous cell carcinoma (OSCC), but the mechanisms underlying the development of these subtypes remain unclear. Focusing on the highest score of POIs (Worst POI, WPOI) present within each tumor, we observe a disease progression-driven shift of WPOI towards the high-risk type 4/5, associated with a mesenchymal phenotype in advanced OSCC. WPOI 4-5-derived cancer-associated fibroblasts (CAFs), characterized by high oxytocin receptor expression (OXTR), contribute to local-regional metastasis.

View Article and Find Full Text PDF

When small proteins such as cytokines bind to their associated receptors on the plasma membrane, they can activate multiple internal signaling cascades allowing information from one cell to affect another. Frequently the signaling cascade leads to a change in gene expression that can affect cell functions such as proliferation, differentiation and homeostasis. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) and the tumor necrosis factor receptor (TNFR) are the pivotal mechanisms employed for such communication.

View Article and Find Full Text PDF

SHARPIN regulates signaling from the tumor necrosis factor (TNF) superfamily and pattern-recognition receptors. An inactivating Sharpin mutation in mice causes TNF-mediated dermatitis. Blocking cell death prevents the phenotype, implicating TNFR1-induced cell death in causing the skin disease.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF) is a key component of the innate immune response. Upon binding to its receptor, TNFR1, it promotes production of other cytokines via a membrane-bound complex 1 or induces cell death via a cytosolic complex 2. To understand how TNF-induced cell death is regulated, we performed mass spectrometry of complex 2 and identified tankyrase-1 as a native component that, upon a death stimulus, mediates complex 2 poly-ADP-ribosylation (PARylation).

View Article and Find Full Text PDF