Publications by authors named "Silje Lauksund"

Microbial division rates determine the speed of mutation accumulation and thus the emergence of antimicrobial resistance. Microbial death rates are affected by antibiotic action and the immune system. Therefore, measuring these rates has advanced our understanding of host-pathogen interactions and antibiotic action.

View Article and Find Full Text PDF

Antibiotic resistance is rising and we urgently need to gain a better quantitative understanding of how antibiotics act, which in turn would also speed up the development of new antibiotics. Here, we describe a computational model (COMBAT-COmputational Model of Bacterial Antibiotic Target-binding) that can quantitatively predict antibiotic dose-response relationships. Our goal is dual: We address a fundamental biological question and investigate how drug-target binding shapes antibiotic action.

View Article and Find Full Text PDF

Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options.

View Article and Find Full Text PDF

The syntheses of metallo-β-lactamase inhibitors comprising chelating moieties, with varying zinc affinities, and peptides partly inspired from bacterial peptide sequences, have been undertaken. The zinc chelator strength was varied using the following chelators, arranged in order of ascending binding affinity: dipicolylamine (DPA, tridentate), dipicolyl-1,2,3-triazolylmethylamine (DPTA, tetradentate) dipicolyl ethylenediamine (DPED, tetradentate) and trispicolyl ethylenediamine (TPED, pentadentate). The chosen peptides were mainly based on the known sequence of the C-terminus of the bacterial peptidoglycan precursors.

View Article and Find Full Text PDF
Article Synopsis
  • There is a critical need for new antimicrobial drugs due to rising bacterial resistance, prompting research into alternative compounds.
  • Researchers synthesized a variety of sulfonamidobenzamide lead compounds inspired by marine antimicrobials, leading to the discovery of two effective compounds, G6 and J18, which show strong activity against MRSA and VRE.
  • G6 also effectively disrupts bacterial biofilms and operates by targeting the cell membrane, similar to the biocide chlorhexidine.
View Article and Find Full Text PDF

The rise of antimicrobial resistance (AMR) worldwide and the increasing spread of multi-drug-resistant organisms expressing metallo-β-lactamases (MBL) require the development of efficient and clinically available MBL inhibitors. At present, no such inhibitor is available, and research is urgently needed to advance this field. We report herein the development, synthesis, and biological evaluation of chemical compounds based on the selective zinc chelator tris-picolylamine (TPA) that can restore the bactericidal activity of Meropenem (MEM) against Pseudomonas aeruginosa and Klebsiella pneumoniae expressing carbapenemases Verona integron-encoded metallo-β-lactamase (VIM-2) and New Delhi metallo-β-lactamase 1 (NDM-1), respectively.

View Article and Find Full Text PDF

Bacterial resistance is compromising the use of β-lactam antibiotics including carbapenems. The main resistance mechanism against β-lactams is hydrolysis of the β-lactam ring mediated by serine- or metallo-β-lactamases (MBLs). Although several inhibitors of MBLs have been reported, none has been developed into a clinically useful inhibitor.

View Article and Find Full Text PDF
Article Synopsis
  • * The compound E23 was identified as highly effective, showing minimal inhibitory concentrations (MICs) of 0.5-2μg/ml against various Gram-positive bacteria, including MRSE and other resistant strains.
  • * This research highlights the potential of marine-derived structural motifs to inspire the development of new antimicrobial agents.
View Article and Find Full Text PDF

Infectious pancreatic necrosis virus (IPNV) is one of the major viral pathogens causing disease in farmed Atlantic salmon worldwide. In the present work we show that several of the IPN proteins have powerful antagonistic properties against type I IFN induction in Atlantic salmon. Each of the five IPNV genes cloned into an expression vector were tested for the ability to influence activation of the Atlantic salmon IFNa1 promoter by the interferon promoter inducing protein one (IPS-1) or interferon regulatory factors (IRF).

View Article and Find Full Text PDF

Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation (HSMI) of farmed Atlantic salmon (Salmo salar). We have performed detailed sequence analysis of the PRV genome with focus on putative encoded proteins, compared with prototype strains from mammalian (MRV T3D)- and avian orthoreoviruses (ARV-138), and aquareovirus (GCRV-873). Amino acid identities were low for most gene segments but detailed sequence analysis showed that many protein motifs or key amino acid residues known to be central to protein function are conserved for most PRV proteins.

View Article and Find Full Text PDF

The striking difference in evolution of type I IFN genes of fish and mammals poses the question of whether these genes are induced through similar or different signalling pathways in the two vertebrate groups. Previous work has shown that expression of both Atlantic salmon (Salmo salar) IFNa1 and mammalian IFN-beta genes is dependent on IRF and NF-kappaB elements in their promoters. In mammals, IFN-beta transcription is induced through the RIG-I/MDA5 pathway where the adaptor protein IPS-1 plays a key role in the signal transduction.

View Article and Find Full Text PDF

The translation initiation factor 2 alpha (eIF2alpha)-kinase, dsRNA-activated protein kinase (PKR), constitutes one of the major antiviral proteins activated by viral infection of vertebrates. PKR is activated by viral double-stranded RNA and subsequently phosphorylates the alpha-subunit of translation initiation factor eIF2. This results in overall down regulation of protein synthesis in the cell and inhibition of viral replication.

View Article and Find Full Text PDF