When oxidized, dietary oils generate products which have the potential to cause adverse effects on human health. The objective of the study was to investigate whether lipid oxidation products in an oxidized dietary oil can be taken up in intestinal cells, induce antioxidant stress responses and potentially be harmful. The in vitro cell model HT29 was exposed to camelina oil with different extents of oxidation, or only 4-hydroxy-2-hexenal (HHE) or 4-hydroxy-2-nonenal (HNE).
View Article and Find Full Text PDFDietary polyphenols are subjected, following ingestion, to an extensive metabolism, and the molecules that act at the cellular and tissue level will be, most likely, metabolites rather than native polyphenols. The mechanisms behind the positive effects exerted by polyphenols are not yet completely elucidated, since most in vitro studies use unmetabolised polyphenols rather than the metabolites present in the body. The aim of this study was to investigate and compare the potential effect of phenolic metabolites on the immune response using U937 monocyte and THP-1 macrophage cell cultures.
View Article and Find Full Text PDF