Publications by authors named "Silja J Strohmaier"

Mitochondrial cytochromes P450 presumably originated from a common microsomal P450 ancestor. However, it is still unknown how ancient mitochondrial P450s were able to retain their oxygenase function following relocation to the mitochondrial matrix and later emerged as enzymes specialized for steroid hormone biosynthesis in vertebrates. Here, we used the approach of ancestral sequence reconstruction (ASR) to resurrect ancient CYP11A1 enzymes and characterize their unique biochemical properties.

View Article and Find Full Text PDF

Oxygen surrogates (OSs) have been used to support cytochrome P450 (P450) enzymes for diverse purposes in drug metabolism research, including reaction phenotyping, mechanistic and inhibition studies, studies of redox partner interactions, and to avoid the need for NADPH or a redox partner. They also have been used in engineering P450s for more cost-effective, NADPH-independent biocatalysis. However, despite their broad application, little is known of the preference of individual P450s for different OSs or the substrate dependence of OS-supported activity.

View Article and Find Full Text PDF

NADPH-cytochrome P450 reductase (CPR) is the natural redox partner of microsomal cytochrome P450 enzymes. CPR shows a stringent preference for NADPH over the less expensive cofactor, NADH, economically limiting its use as a biocatalyst. The complexity of cofactor-linked CPR protein dynamics and the incomplete understanding of the interaction of CPR with both cofactors and electron acceptors present challenges for the successful rational engineering of a CPR with enhanced activity with NADH.

View Article and Find Full Text PDF

Cytochromes P450 are found throughout the biosphere in a wide range of environments, serving a multitude of physiological functions. The ubiquity of the P450 fold suggests that it has been co-opted by evolution many times, and likely presents a useful compromise between structural stability and conformational flexibility. The diversity of substrates metabolized and reactions catalyzed by P450s makes them attractive starting materials for use as biocatalysts of commercially useful reactions.

View Article and Find Full Text PDF