An ideal biomedical hydrogel should imitate natural tissues with high water absorption, high toughness and superior biocompatibility. However, hydrogels constructed from biomolecules such as polysaccharides have low mechanical strength and limited applications. Based on carboxymethyl chitosan (CMCS) and polyacrylamide (PAM), a facile process is presented for preparing double network hydrogels (CMCS/PAM) with improved mechanical properties.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2024
The key of heterostructure is the combinations created by stacking various vdW materials, which can modify interlayer coupling and electronic properties, providing exciting opportunities for designer devices. However, this simple stacking does not create chemical bonds, making it difficult to fundamentally alter the electronic structure. Here, we demonstrate that interlayer interactions in heterostructures can be fundamentally controlled using hydrostatic pressure, providing a bonding method to modify electronic structures.
View Article and Find Full Text PDFMicromachines (Basel)
May 2024
In this article, we demonstrate a high-energy, wide-spectrum, spatiotemporal mode-locked (STML) fiber laser. Unlike traditional single-mode fiber lasers, STML fiber lasers theoretically enable mode-locking with various combinations of transverse modes. The laser can deliver two different STML pulse sequences with different pulse widths, spectra and beam profiles, due to the different compositions of transverse modes in the output pulses.
View Article and Find Full Text PDFThe growing concerns about environmental sustainability and energy security, such as exhaustion of traditional fossil fuels and global carbon footprint growth have led to an increasing interest in alternative energy sources, especially bioenergy. Recently, numerous scenarios have been proposed regarding the use of bioenergy from different sources in the future energy systems. In this regard, one of the biggest challenges for scientists is managing, modeling, decision-making, and future forecasting of bioenergy systems.
View Article and Find Full Text PDFThe band gap and mechanical control ability of two-dimensional materials largely determine the application value of two-dimensional devices in optical and electronic properties, so the bandgap controllability of two-dimensional materials broadens the application range of multi-functional devices. In the layered van der Waals (vdW) material AgInPS, the band gap can be adjusted by the number of layers and flexible strain, and the few layers AgInPShave discrete band gap values, which are also relevant for optoelectronic applications. In the strain range of up to 2.
View Article and Find Full Text PDFIn the paper, the temperature dependence of magnetic nanoparticle (MNP) paramagnetic chemical shift (paraSHIFT) was studied by magnetic resonance (MR) spectroscopy. Based on it, iron oxide MNPs are considered as MR shifting probes for determining the temperature in liquids. With the increase in measurement temperature of the MNP reagent with MNPs, the decrease of MNP magnetization would make the peak of spectroscopy shift to the higher chemical shift area.
View Article and Find Full Text PDFRev Sci Instrum
February 2021
This study proposes a temperature model for the relaxation of magnetic nanoparticles and a phase measurement method under a mixing-frequency excitation field, which can improve the accuracy of temperature measurements in magnetic nanothermometry. According to the Debye-based magnetization model for magnetic nanoparticles, phases at mixing frequencies are used to solve the problem of a delay in the relaxation phase of the magnetic field at a high frequency. This method can improve the signal-to-noise ratio of the response of the magnetic nanoparticles and weaken the phase shift of the detection coils caused by the changes in temperature.
View Article and Find Full Text PDFThis paper reports on a highly accurate approach of magnetic resonance (MR) thermometry using iron oxide magnetic nanoparticles (MNPs) as temperature sensors. An empirical model for the description of the temperature dependent R relaxation rate is proposed by taking into account the temperature sensitivity of the MNP magnetization. The temperature sensitivity of the MNP magnetization (η) and the temperature sensitivity of the R relaxation rate (κ) are simulated with the proposed empirical models to investigate their dependence on the magnetic field and the particle size.
View Article and Find Full Text PDF