Samples of dielectric optical waveguides of rib or strip type in thin-film lithium niobate (TFLN) technology are characterized with respect to their optical loss using the Fabry-Pérot method. Attributing the losses mainly to sidewall roughness, we employ a simple perturbational procedure, based on rigorously computed mode profiles of idealized channels, to estimate the attenuation for waveguides with different cross sections. A single fit parameter suffices for an adequate modelling of the effect of the waveguide geometry on the loss levels.
View Article and Find Full Text PDFInterference between single photons is key for many quantum optics experiments and applications in quantum technologies, such as quantum communication or computation. It is advantageous to operate the systems at telecommunication wavelengths and to integrate the setups for these applications in order to improve stability, compactness and scalability. A new promising material platform for integrated quantum optics is lithium niobate on insulator (LNOI).
View Article and Find Full Text PDF