Publications by authors named "Silhavy D"

Circadian clocks rely on transcriptional/translational feedback loops involving clock genes and their corresponding proteins. While the primary oscillations originate from gene expression, the precise control of clock protein stability plays a pivotal role in establishing the 24-hour circadian rhythms. Most clock proteins are degraded through the ubiquitin/26S proteasome pathway, yet the enzymes responsible for ubiquitination and deubiquitination remain poorly characterised.

View Article and Find Full Text PDF

Barley reproductive fitness and efficient heat stress adaptation requires the activity of TFIIS, the elongation cofactor of RNAPII. Regulation of transcriptional machinery and its adaptive role under different stress conditions are studied extensively in the dicot model plant Arabidopsis, but our knowledge on monocot species remains elusive. TFIIS is an RNA polymerase II-associated transcription elongation cofactor.

View Article and Find Full Text PDF

Light affects almost every aspect of plant development. It is perceived by photoreceptors, among which phytochromes (PHY) are responsible for monitoring the red and far-red spectrum. Arabidopsis thaliana possesses five phytochrome genes (phyA-phyE).

View Article and Find Full Text PDF

The shift of dark-grown seedlings to the light leads to substantial reprogramming of gene expression, which results in dramatic developmental changes (referred to as de-etiolation or photomorphogenesis). MicroRNAs (miRNAs) regulate most steps of plant development, thus miRNAs might play important role in transcriptional reprogramming during de-etiolation. Indeed, miRNA biogenesis mutants show aberrant de-etiolation.

View Article and Find Full Text PDF

Elongation factor TFIIS (transcription factor IIS) is structurally and biochemically probably the best characterized elongation cofactor of RNA polymerase II. However, little is known about TFIIS regulation or its roles during stress responses. Here, we show that, although TFIIS seems unnecessary under optimal conditions in Arabidopsis, its absence renders plants supersensitive to heat; tfIIs mutants die even when exposed to sublethal high temperature.

View Article and Find Full Text PDF

To keep mRNA homeostasis, the RNA degradation, quality control and silencing systems should act in balance in plants. Degradation of normal mRNA starts with deadenylation, then deadenylated transcripts are degraded by the SKI-exosome 3'-5' and/or XRN4 5'-3' exonucleases. RNA quality control systems identify and decay different aberrant transcripts.

View Article and Find Full Text PDF

Eukaryotic release factor 1 (eRF1) is a translation termination factor that binds to the ribosome at stop codons. The expression of eRF1 is strictly controlled, since its concentration defines termination efficiency and frequency of translational readthrough. Here, we show that eRF1 expression in Neurospora crassa is controlled by an autoregulatory circuit that depends on the specific 3'UTR structure of erf1 mRNA.

View Article and Find Full Text PDF

In order to identify the most relevant environmental parameters that regulate flowering time of bulbous perennials, first flowering dates of 329 taxa over 33 yr are correlated with monthly and daily mean values of 16 environmental parameters (such as insolation, precipitation, temperature, soil water content, etc.) spanning at least 1 yr back from flowering. A machine learning algorithm is deployed to identify the best explanatory parameters because the problem is strongly prone to overfitting for traditional methods: if the number of parameters is the same or greater than the number of observations, then a linear model can perfectly fit the dependent variable (observations).

View Article and Find Full Text PDF

Certain apple cultivars accumulate to high levels in their nectar and stigma exudate an acidic chitinase III protein that can protect against pathogens including fire blight disease causing Erwinia amylovora. To prevent microbial infections, flower nectars and stigma exudates contain various antimicrobial compounds. Erwinia amylovora, the causing bacterium of the devastating fire blight apple disease, is the model pathogen that multiplies in flower secretions and infects through the nectaries.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs comprising a premature translation termination codon. The adenosine triphosphate (ATP)-dependent RNA helicase up-frameshift 1 (UPF1) is a major NMD factor in all studied organisms; however, the complexity of this mechanism has not been fully characterized in plants. To identify plant NMD factors, we analyzed UPF1-interacting proteins using tandem affinity purification coupled to mass spectrometry.

View Article and Find Full Text PDF

RNA quality control systems identify and degrade aberrant mRNAs, thereby preventing the accumulation of faulty proteins. Non-stop decay (NSD) and No-go decay (NGD) are closely related RNA quality control systems that act during translation. NSD degrades mRNAs lacking a stop codon, while NGD recognizes and decays mRNAs that contain translation elongation inhibitory structures.

View Article and Find Full Text PDF

Translation-dependent mRNA quality control systems protect the protein homeostasis of eukaryotic cells by eliminating aberrant transcripts and stimulating the decay of their protein products. Although these systems are intensively studied in animals, little is known about the translation-dependent quality control systems in plants. Here, we characterize the mechanism of nonstop decay (NSD) system in Nicotiana benthamiana model plant.

View Article and Find Full Text PDF

When a ribosome reaches a stop codon, the eukaryotic Release Factor 1 (eRF1) binds to the A site of the ribosome and terminates translation. In yeasts and plants, both over- and underexpression of eRF1 lead to altered phenotype indicating that eRF1 expression should be strictly controlled. However, regulation of eRF1 level is still poorly understood.

View Article and Find Full Text PDF

Background: Nicotiana benthamiana is a widely used model plant species for research on plant-pathogen interactions as well as other areas of plant science. It can be easily transformed or agroinfiltrated, therefore it is commonly used in studies requiring protein localization, interaction, or plant-based systems for protein expression and purification. To discover and characterize the miRNAs and their cleaved target mRNAs in N.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is an essential quality control system that degrades aberrant transcripts containing premature termination codons and regulates the expression of several normal transcripts. Targets for NMD are selected during translational termination. If termination is slow, the UPF1 NMD factor binds the eRF3 protein of the termination complex and then recruits UPF2 and UPF3.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that recognizes and degrades transcripts containing NMD cis elements in their 3'untranslated region (UTR). In yeasts, unusually long 3'UTRs act as NMD cis elements, whereas in vertebrates, NMD is induced by introns located >50 nt downstream from the stop codon. In vertebrates, splicing leads to deposition of exon junction complex (EJC) onto the mRNA, and then 3'UTR-bound EJCs trigger NMD.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that identifies and degrades mRNAs containing premature termination codons (PTCs). If translation terminates at a PTC, the UPF1 NMD factor binds the terminating ribosome and recruits UPF2 and UPF3 to form a functional NMD complex, which triggers the rapid decay of the PTC-containing transcript. Although NMD deficiency is seedling lethal in plants, the mechanism of plant NMD remains poorly understood.

View Article and Find Full Text PDF

In nonsense-mediated mRNA decay (NMD), large protein complexes cooperate to trigger degradation of mRNA with a premature termination codon. Due to the extreme variation in the size and topology of its mRNA substrate, the structural underpinning of the fidelity of NMD is little understood. Based on bioinformatic predictions, we suggest that fly-casting mechanisms enabled by long disordered regions in NMD complexes are exploited for the underlying effective long-range communication.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that identifies and eliminates transcripts having a premature translation termination codon (PTC). NMD is also involved in the control of several wild-type mRNAs. The NMD core machinery consists of three highly conserved NMD factors (UPF1, UPF2 and UPF3) and at least one less conserved 14-3-3-like domain containing protein (SMG7).

View Article and Find Full Text PDF

Nonsense-mediated decay (NMD) is a quality control mechanism that identifies and degrades aberrant mRNAs containing premature termination codons (PTC). NMD also regulates the expression of many wild-type genes. In plants, NMD identifies a stop codon as a PTC and initiates the rapid degradation of the transcript if the 3'untranslated region (UTR) is unusually long or if it harbors an intron.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a quality control system that degrades mRNAs containing premature termination codons. Although NMD is well characterized in yeast and mammals, plant NMD is poorly understood. We have undertaken the functional dissection of NMD pathways in plants.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control mechanism that identifies and eliminates aberrant mRNAs containing a premature termination codon (PTC). Although, key trans-acting NMD factors, UPF1, UPF2 and UPF3 are conserved in yeast and mammals, the cis-acting NMD elements are different. In yeast, short specific sequences or long 3'-untranslated regions (3'-UTRs) render an mRNA subject to NMD, while in mammals' 3'-UTR located introns trigger NMD.

View Article and Find Full Text PDF

In plants, RNA silencing (RNA interference) is an efficient antiviral system, and therefore successful virus infection requires suppression of silencing. Although many viral silencing suppressors have been identified, the molecular basis of silencing suppression is poorly understood. It is proposed that various suppressors inhibit RNA silencing by targeting different steps.

View Article and Find Full Text PDF

RNA silencing is a conserved eukaryotic gene regulatory system in which sequence specificity is determined by small RNAs. Plant RNA silencing also acts as an antiviral mechanism; therefore, viral infection requires expression of a silencing suppressor. The mechanism and the evolution of silencing suppression are still poorly understood.

View Article and Find Full Text PDF