Publications by authors named "Siles J"

Kiwifruit Vine Decline Syndrome (KVDS) has become a major concern in Italy, impacting both plant health and production. This study aims to investigate how KVDS affects soil health indicators and the composition of soil microbial communities by comparing symptomatic and asymptomatic areas in two kiwifruit orchards located in Latium, Italy. Soil samples were collected during both spring and autumn to assess seasonal variations in soil physicochemical properties, enzyme activities, and microbial biomass.

View Article and Find Full Text PDF

This study aims to develop a solver to calculate the dispersion of emitted odour from the main sources located in a large urban wastewater treatment plant (WWTP). Its seasonal odour impact on surrounding areas, including nearby populations, was also evaluated. Different seasons of the year were studied using the prevailing meteorological conditions in each case, within the framework of a Eulerian model.

View Article and Find Full Text PDF

Nitrification of ammoniacal nitrogen (N-NH) to nitrate (N-NO) was investigated in a lab-scale sequencing batch reactor (SBR) to evaluate its efficiency. During the nitrification process the removal of N-NH reached 96%, resulting in 73% formation of N-NO. A lineal correlation (r = 0.

View Article and Find Full Text PDF

In this study, five urban WWTPs (Wastewater Treatment Plant) with different biological treatment (Extended Aeration Activated Sludge - EAAS; Rotating Biological Contactor - RBC), wastewater type (Urban; Industrial) and size, were jointly evaluated. The aim was twofold: (1) to analyze and compare their odor emissions, and (2) to identify the main causes of its generation from the relationships between physico-chemical, respirometric and olfactometric variables. The results showed that facilities with EAAS technology were more efficient than RBC, with elimination yields of organic matter higher than 90%.

View Article and Find Full Text PDF

Unlabelled: (1) Background: Experiences involve feelings, which, in turn, produce meaning that can become a subjectively lived experience. Therefore, the study of experiences and feelings is essential.

Introduction: We examined the role of narrative-based nursing (NBN) and the poetry of care (PC).

View Article and Find Full Text PDF

Long-term contaminated environments have been recognized as potential hotspots for bacterial discovery in taxonomic and functional terms for bioremediation purposes. Here, bacterial diversity in waste sediment collected from a former industrial dumpsite and contaminated with petroleum hydrocarbon and heavy metals was investigated through the parallel application of culture-independent (16S rRNA gene amplicon sequencing) and -dependent (plate culturing followed by colony picking and identification of isolates by 16S rRNA gene Sanger sequencing) approaches. The bacterial diversities retrieved by both approaches greatly differed.

View Article and Find Full Text PDF

This study investigates the effects of radiofrequency ablation (RFA)-created lesions on an explanted human heart in wedge preparation by simultaneous endo and sub-endo optical mapping. The heart in Langendorff perfusion was ablated under 40 W. The ventricle was stained with Vm sensitive dye Di-4-ANBDQPQ and two excitation light bands of different penetration depths were used (red = 660 nm, green = 525 nm) to perform a conduction velocity (CV) difference analysis for identification of CV alter-nans.

View Article and Find Full Text PDF

Biochar made-up of dry olive residue (DOR), a biomass resulting from the olive oil extraction industry, has been proposed to be used as a reclamation agent for the recovery of metal contaminated soils. The aim of the present study was to investigate whether the soil application of DOR-based biochar alone or in combination with arbuscular mycorrhizal fungi (AMF) leads to an enhancement in the functionality and abundance of microbial communities inhabiting metal contaminated soils. To study that, a greenhouse microcosm experiment was carried out, where the effect of the factors (i) soil application of DOR-based biochar, (ii) biochar pyrolysis temperature (considering the variants 350 and 500 °C), (iii) soil application dose of biochar (2 and 5%), (iv) soil contamination level (slightly, moderately and highly polluted), (v) soil treatment time (30, 60 and 90 days) and (vi) soil inoculation with Funneliformis mosseae (AM fungus) on β-glucosidase and dehydrogenase activities, FA (fatty acid)-based abundance of soil microbial communities, soil glomalin content and AMF root colonization rates of the wheat plants growing in each microcosm were evaluated.

View Article and Find Full Text PDF

In this study, the de-icing performance is investigated between traditional carbon fibre-based coatings and novel MXene and poly(3,4-ethylenedioxythiophene)-coated single-walled carbon nanotube (PEDOT-CNT) nanocoatings, based on simple and scalable coating application. The thickness and morphology of the coatings are investigated using atomic force microscopy and scanning electron microscopy. Adhesion strength, as well as electrical properties, are evaluated on rough and glossy surfaces of the composite.

View Article and Find Full Text PDF

As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC] = 0.07 μM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs.

View Article and Find Full Text PDF

Land use is a key factor driving changes in soil carbon (C) cycle and contents worldwide. The priming effect (PE)-CO emissions from changed soil organic matter decomposition in response to fresh C inputs-is one of the most unpredictable phenomena associated with C cycling and related nutrient mobilization. Yet, we know very little about the influence of land use on soil PE across contrasting environments.

View Article and Find Full Text PDF

Ozone has been applied in many processes (drinking water disinfection and wastewater treatment, among others) based on its high degree of effectiveness as a wide-spectrum disinfectant and its potential for the degradation of pollutants and pesticides. Nevertheless, the effects of irrigation with ozonated water on the soil microbial community and plant physiology and productivity at the field scale are largely unknown. Here, we assessed the impact of irrigation with ozonated water on the microbial community of a Mediterranean soil and on Solanum lycopersicum L.

View Article and Find Full Text PDF

A large quantity of lignocellulosic biomass is generated annually across the world which leads to environmental pollution and requires valorization. This study investigated the effect of hydrothermal pretreatment on the anaerobic digestion and co-digestion of the residual pepper plant and eggplant with a focus on kinetics. Two thermal hydrolysis rates were observed, with the optimal conditions for the hydrothermal pretreatment of lignocellulosic biomass being 120°C for 40 min.

View Article and Find Full Text PDF

The influence of bed material on the odor removal performance of a biofilter was studied. A compost-wood biofilter and a wood biofilter were treated with a gaseous stream contaminated with butyric acid and comparatively evaluated at pilot scale using olfactometric, physico-chemical and microbiological approaches. The variables analyzed in both biofilters were correlated with specific families of their microbiota composition.

View Article and Find Full Text PDF

Organic wastes have the potential to be used as soil organic amendments after undergoing a process of stabilization such as composting or as a resource of renewable energy by anaerobic digestion (AD). Both composting and AD are well-known, eco-friendly approaches to eliminate and recycle massive amounts of wastes. Likewise, the application of compost amendments and digestate (the by-product resulting from AD) has been proposed as an effective way of improving soil fertility.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how environmental factors affect the structure and function of archaeal communities in soil, using advanced techniques like 16S rRNA gene sequencing and metaproteomics.
  • Researchers found that Nitrosophaerales and Thermoplasmata were the most prevalent archaeal groups across various climates and vegetation types, representing around 2.3% of microbial proteins in the soil.
  • The results suggest a link between increasing aridity and higher proportions of Nitrosophaerales genes and archaeal proteins, indicating that global climate changes could impact these important microorganisms.
View Article and Find Full Text PDF

Water shortage and low organic carbon content in soil limit soil fertility and crop productivity. The use of desalinated seawater is increasing as an alternative source of irrigation water. However, it has a high boron (B) content that could cause toxicity in the plant-soil microbial system.

View Article and Find Full Text PDF

The true myrtle, , is a small perennial evergreen tree that occurs in Europe, Africa, and Asia with a circum-Mediterranean geographic distribution. Unfortunately, the Mediterranean Forests, where occurs, are critically endangered and are currently restricted to small fragmented areas in protected conservation units. In the present work, we performed, for the first time, a metabarcoding study on the spatial variation of fungal community structure in the foliar endophytome of this endemic plant of the Mediterranean biome, using bipartite network analysis as a model.

View Article and Find Full Text PDF

Odor emissions from wastewater treatment plants (WWTPs) have always been a public concern. In this work, the physico-chemical, olfactometric and textural characterization of granular active carbon (GAC) used by an urban WWTP as a deodorization system, as well as the chromatographic quantification of the retained odoriferous compounds, have been carried out. These techniques have allowed an integral evaluation of the contaminated GAC and the characterization of the retained gaseous emission from four different stages of the wastewater treatment (pretreatment header: GAC-1; sand and fat removal: GAC-2; sludge thickening: GAC-3; sludge dehydration: GAC-4).

View Article and Find Full Text PDF

This research study evaluates various pre-treatments to improve sewage sludge solubilization prior to treatment by mesophilic anaerobic digestion. Microwave, thermal, and sonication pre-treatments were compared as these pre-treatments are the most commonly used for this purpose. The solubilization of sewage sludge was evaluated through the variation in soluble total organic carbon (sTOC, mg/L) and soluble total nitrogen (sTN, mg/L).

View Article and Find Full Text PDF

This study evaluates the feasibility of advanced biofilm microalgae cultivation in a twin layer (TL) system for nutrient removal (N and P) as the tertiary treatment in small wastewater treatment plants (WWTPs) located in sensitive areas. Furthermore, the potential valorisation of microalgae biomass as a component of bio-based fertilizers is assessed. Scenedesmus sp.

View Article and Find Full Text PDF

The objective of this study is to evaluate comparatively the odor removal efficacy of two biofilters operated under different conditions and to identify taxonomically the microbial communities responsible for butyric acid degradation. Both biofiltration systems, which were filled with non-inoculated wood chips and exposed to gas streams containing butyric acid, were evaluated under different operational conditions (gas airflow and temperature) from the physical-chemical, microbiological and olfactometric points of view. The physical-chemical characterization showed the acidification of the packing material and the accumulation of butyric acid during the biofiltration process (<60 days).

View Article and Find Full Text PDF