Transitioning from crude oil to renewable sources of carbon-based chemicals is critical for advancing sustainable development. Lignin, a wood-derived biomacromolecule, holds great potential as a renewable feedstock, but efficient depolymerization and dearomatization methods are required to fully unlock its potential. In this investigation, we present a silver-catalyzed aqueous electrocatalytic method for the selective depolymerization and partial dearomatization of soda lignin under mild, ambient conditions.
View Article and Find Full Text PDFReplacing crude oil as the primary industrial source of carbon-based chemicals has become crucial for both environmental and resource sustainability reasons. In this scenario, wood arises as an excellent candidate, whilst depolymerization approaches have emerged as promising strategies to unlock the lignin potential as a resource in the production of high-value organic chemicals. However, many drawbacks, such as toxic solvents, expensive catalysts, high energy inputs, and poor product selectivity have represented major challenges to this task.
View Article and Find Full Text PDF