Evolutionary rescue can prevent populations from declining under climate change, and should be more likely at high-latitude, "leading" edges of species' ranges due to greater temperature anomalies and gene flow from warm-adapted populations. Using a resurrection study with seeds collected before and after a 7-year period of record warming, we tested for thermal adaptation in the scarlet monkeyflower Mimulus cardinalis. We grew ancestors and descendants from northern-edge, central, and southern-edge populations across eight temperatures.
View Article and Find Full Text PDFPerformance curves are valuable tools for quantifying the fundamental niches of organisms and testing hypotheses about evolution, life-history trade-offs, and the drivers of variation in species' distribution patterns. Here, we present a novel Bayesian method for characterizing performance curves that facilitates comparisons among species. We then use this model to quantify and compare the hydrological performance curves of 14 different taxa in the genus Lasthenia, an ecologically diverse clade of plants that collectively occupy a variety of habitats with unique hydrological features, including seasonally flooded wetlands called vernal pools.
View Article and Find Full Text PDF