Domain Generation Algorithms (DGAs) are used by malware to generate pseudorandom domain names to establish communication between infected bots and command and control servers. While DGAs can be detected by machine learning (ML) models with great accuracy, offering DGA detection as a service raises privacy concerns when requiring network administrators to disclose their DNS traffic to the service provider. The main scientific contribution of this paper is to propose the first end-to-end framework for privacy-preserving classification as a service of domain names into DGA (malicious) or non-DGA (benign) domains.
View Article and Find Full Text PDF