Background: Digital health plays a vital role in healthcare services. Governments in many countries, including China, are increasingly advocating for the appropriate use of digital technologies to address significant health system challenges. It is crucial to incorporate digital health education into the curriculum for future nurses to adapt to the changes in the digital medical system.
View Article and Find Full Text PDFH1N1 influenza virus is a significant global public health concern. Monoclonal antibodies (mAbs) targeting specific viral proteins such as hemagglutinin (HA) have become an important therapeutic strategy, offering highly specific targeting to block viral transmission and infection. This study focused on the development of mAbs targeting HA of the A/Victoria/2570/2019 (H1N1pdm09, VIC-19) strain by utilizing hybridoma technology to produce two mAbs with high binding capacity.
View Article and Find Full Text PDFAvian influenza viruses (AIVs) have caused a large number of epidemics in domestic and wild birds, and even posed a health challenge to humans. Highly pathogenic AIVs have attracted the most public attention. However, low pathogenic AIVs, including H4, H6, and H10 subtype AIVs, have spread covertly in domestic poultry, without obvious clinical signs.
View Article and Find Full Text PDFAvian influenza viruses (AIVs) are influenza A viruses, of which subtypes H1, H2 and H3 are highly transmissible in poultry and have the risk of transmission to human as well. It is important to establish an accurate, sensitive and convenient means of virus detection. In this study, we developed a multiplex real-time RT-PCR assay based on conserved sequences of the virus hemagglutinin and matrix, and designed primers and probes for the simultaneous and rapid detection of AIV subtypes H1, H2 and H3.
View Article and Find Full Text PDFThe influenza A (H1N1) pdm09 virus attracted public attention because of its high prevalence. The annual global morbidity and mortality rates of influenza remain high despite the application of influenza vaccines and antiviral drugs, which indicates the urgent need to identify a more effective strategy for controlling and treating A(H1N1) pdm09 influenza infection. To produce a highly effective therapeutic with broad specificity for A(H1N1) pdm09 influenza viruses, we generated 15 murine monoclonal antibodies (mAbs) via hybridoma technology: 11 mAbs demonstrated 20-100% therapeutic protection in a mouse model of A(H1N1) pdm09 infection at a single dose of 10 mg/kg.
View Article and Find Full Text PDFUrokinase is widely used in the dissolution of an acute pulmonary embolism due to its high biocatalytic effect. However, how to precisely regulate its dose, avoid the side effects of hemolysis or ineffective thrombolysis caused by too high or too low a dose, and seize the golden time of acute pulmonary embolism are the key factors for its clinical promotion. Therefore, based on the precise design of a molecular structure, an ultrasonic-responsive nanoliposome capsule was prepared in this paper.
View Article and Find Full Text PDFPurpose: We set out to undertake a preliminary assessment of the left ventricular hemodynamic status with right ventricular double-chamber pacing by energy loss (EL), wall shear stress (WSS), and circulation intensity (CIR) of vector flow mapping (VFM). We also planned to evaluate the value of VFM technology by measuring cardiac function after pacemaker implantation.
Method: Data from 58 patients living with right ventricular double-chamber (right ventricular septal) pacemakers as well as 58 healthy volunteers matched in age and gender were collected.
Background: Theranostics based on multifunctional nanoparticles (NPs) is a promising field that combines therapeutic and diagnostic functionalities into a single nanoparticle system. However, the major challenges that lie ahead are how to achieve accurate early diagnosis and how to develop efficient and noninvasive treatment. Sonodynamic therapy (SDT) utilizing ultrasound combined with a sonosensitizer represents a novel noninvasive modality for cancer therapy.
View Article and Find Full Text PDFHigh intensity focused ultrasound (HIFU) is a noninvasive thermal ablation technique for the treatment of benign and malignant solid masses. To improve the efficacy of HIFU ablation, we developed poly (lactide-co-glycolide) (PLGA) nanoparticles encapsulating perfluoropentane (PFP) and hematoporphyrin monomethyl ether (HMME) as synergistic agents (HMME+PFP/PLGA). Two-step biotin-avidin pre-targeting technique was applied for the HIFU ablation.
View Article and Find Full Text PDFHigh intensity focused ultrasound (HIFU) has been recently regarded to be a new type of technique for non-invasive ablation of local tumors and HIFU synergists could significantly improve its therapeutic efficiency. The therapeutic efficiency of HIFU is greatly limited by the low retention of HIFU synergists in the target area and short residence time. This study aimed to explore a method to increase the deposition of HIFU synergists in tumors.
View Article and Find Full Text PDFBACKGROUND The aim of this study was to investigate the feasibility of the application of high-intensity focused ultrasound (HIFU) hat-type ablation mode in in vitro and in vivo models, and to compare the ablation effects of different parameter combinations. MATERIAL AND METHODS HIFU hat-type ablation was performed in isolated bovine liver tissue and in the liver tissue in living rabbits, and the coagulative necrosis for different parameter combinations (plane angles and irradiation order) was investigated. We also analyzed and compared the ablation effects of traditional ablation and hat-type ablation modes.
View Article and Find Full Text PDFThis study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed.
View Article and Find Full Text PDF