Publications by authors named "Sijing Ding"

Microlasers based on ultrahigh-quality-factor erbium-doped silica microcavities are renowned for their exceptionally low thresholds and remarkably narrow linewidths. However, these microlasers struggle to achieve single-mode operation while delivering high output power, which presents a significant barrier to their widespread practical application. Here, we fabricate an erbium-doped silica microsphere cavity with the ultrahigh-Q factor (exceeding 10).

View Article and Find Full Text PDF

Nanogap-based plasmonic metal nanocrystals have been applied in surface-enhanced Raman scattering detection, while the closed and insufficient electromagnetic fields as well as the nonreproducible Raman signal of the substrate greatly restrict the actual application. Herein, a highly uniform Au/AgAu monolayer with abundant nanogaps and huge electromagnetic enhancement is prepared, which shows ultrasensitive and reproducible SERS detection. Au/AgAu with an inner nanogap is first prepared based on Au nanotriangles, and the nanogap is opened from the three tips via a subsequent etching process.

View Article and Find Full Text PDF

Phase junctions exhibit great potential in photocatalytic energy conversion, yet the narrow light response region and inefficient charge transfer limit their photocatalytic performance. Herein, an anatase/rutile phase junction modified by plasmonic TiN and oxygen vacancies (TiN/(A-R-TiO-Ov)) is prepared through an in-situ thermal transformation from TiN for efficient photothermal-assisted photocatalytic hydrogen production for the first time. The content of TiN, oxygen vacancies, and phase components in TiN/(A-R-TiO-Ov) hybrids can be well-adjusted by tuning the heating time.

View Article and Find Full Text PDF

As the most common nonlinear optical process, second harmonic generation (SHG) has important application value in the field of nanophotonics. With the rapid development of metal nanomaterial processing and chemical preparation technology, various structures based on metal nanoparticles have been used to achieve the enhancement and modulation of SHG. In the field of nonlinear optics, plasmonic metal nanostructures have become potential candidates for nonlinear optoelectronic devices because of their highly adjustable physical characteristics.

View Article and Find Full Text PDF

Plasmonic hybrids are regarded as promising candidates for water purification due to their structure-dependent photocatalysis and photothermal performance. It remains a challenge to develop materials that possess these two characteristics for efficient water purification. Herein, plasmonic TiCT/BiS two-dimensional (2D)/2D hybrids were prepared for efficient solar-driven water purification the combination of photothermal conversion and photocatalysis.

View Article and Find Full Text PDF
Article Synopsis
  • Efficient surface-enhanced Raman scattering (SERS) relies on optimizing the electromagnetic field and charge transfer in substrates; this study presents a ternary plasmonic substrate made of Au nanotriangle/CuO hybrids combined with TiCT MXene nanosheets for better SERS performance.
  • By controlling the growth of CuO, the study achieves Au/CuO hybrids with exposed tips, significantly improving SERS detection of methylene blue under 785 nm excitation compared to traditional substrates.
  • The enhanced SERS activity of the MXene/Au/CuO hybrids, characterized by a high analytical enhancement factor and low detection limit, is attributed to improved electric field enhancement and multiple charge-transfer processes between the materials involved.
View Article and Find Full Text PDF

The rational design of Raman substrate materials with prominent electromagnetic enhancement and charge transfer is quite important for surface-enhanced Raman scattering (SERS). Herein, an efficient SERS substrate based on two-dimensional ultrathin TiCT MXene and rough-surfaced Au nanotriangles (NTs) was successfully prepared for efficient detection of organic molecules due to the synthetic effect of an optimized electromagnetic field and charge transfer. Uniform Au NTs with tunable surface roughness were controllably prepared by selectively depositing of Au on the smooth Au NTs.

View Article and Find Full Text PDF

Surface plasmons usually take two forms: surface plasmon polaritons (SPP) and localized surface plasmons (LSP). Recent experiments demonstrate an interesting plasmon mode within plasmonic gaps, showing distinct characters from the two usual forms. In this investigation, by introducing a fundamental concept of SPP standing wave and an analytical model, we reveal the nature of the recently reported plasmon modes.

View Article and Find Full Text PDF

Noble metal nanomaterials have many excellent optical properties due to localized surface plasmon resonance induced by external electric and magnetic fields. The plasmon-enhanced optical properties of nanomaterials can be controlled by changing their shapes or compositions. Here, we use a gentle approach to synthesize Au/PbS/Au nanostars with multiple tips and explore the surface-enhanced Raman scattering (SERS) activity, the second harmonic generation (SHG), and photocatalytic performance.

View Article and Find Full Text PDF

Unlabelled: Colloidal metal nanocrystals (NCs) show great potential in plasmon-enhanced spectroscopy owing to their attractive and structure-depended plasmonic properties. Herein, unique Au rod-cup NCs, where Au nanocups are embedded on the one or two ends of Au nanorods (NRs), are successfully prepared for the first time via a controllable wet-chemistry strategy. The Au rod-cup NCs possess multiple plasmon modes including transverse and longitudinal electric dipole (TED and LED), magnetic dipole (MD), and toroidal dipole (TD) modulated LED resonances, producing large extinction cross-section and huge near-field enhancements for plasmon-enhanced spectroscopy.

View Article and Find Full Text PDF

The cooperation of magnetic and electric plasmon resonances in cup-shaped metallic nanostructures exhibits significant capability for second-harmonic generation (SHG) enhancement. Herein, we report an approach for synthesizing Au open nanoshells with tunable numbers and sizes of openings on a template of six-pointed PbS nanostars. The morphology of Au nanoshells is controlled by adjusting the amount of HAuCl, and the characteristic shapes of pointed nanocaps, open nanoshells, and hollow nanostars are obtained.

View Article and Find Full Text PDF

Metal/semiconductor hybrids show potential application in fields of surface-enhanced Raman spectroscopy (SERS) and photocatalysis due to their excellent light absorption, electric field, and charge-transfer properties. Herein, a WO-Au metal/semiconductor hybrid, which was a WO nanobrick decorated with Au nanoparticles, was prepared via a facile hydrothermal method. The WO-Au hybrids show excellent visible light absorption, strong plasmon coupling, high-performance SERS, and good photocatalytic activity.

View Article and Find Full Text PDF

Flower-like metallic nanocrystals have shown great potential in the fields of nanophononics and energy conversion owing to their unique optical properties and particular structures. Herein, colloid Au nanoflowers with different numbers of petals were prepared by a steerable template process. The structure-adjustable Au nanoflowers possessed double plasmon resonances, tunable electric fields, and greatly enhanced SERS and photocatalytic activity.

View Article and Find Full Text PDF

A phase junction fabricated by two crystalline phases of the same semiconductor is a promising photocatalyst with efficient charge transfer and separation. However, the weak light absorption and uncontrolled phase junction interface limit the generation and separation of photogenerated carriers. Herein, a two-dimensional (2D)/2D phase junction was prepared by growing orthorhombic WO ultrathin nanosheets on hexagonal WO nanosheets through a one-step hydrothermal method.

View Article and Find Full Text PDF

The quantum behavior of surface plasmons has received extensive attention, benefiting from the development of exquisite nanotechnology and the diverse applications. Blueshift, redshift, and nonshift of localized surface plasmon resonances (LSPRs) have all been reported as the particle size decreases and enters the quantum size regime, but the underlying physical mechanism to induce these controversial size dependences is not clear. Herein, we propose an improved semiclassical model for modifying the dielectric function of metal nanospheres by combining the intrinsic quantized electron transitions and surface electron injection or extraction to investigate the plasmon shift and LSPR size dependence of the charged Au nanoparticles.

View Article and Find Full Text PDF

The self-assembly process of metal nanoparticles has aroused wide attention due to its low cost and simplicity. However, most of the recently reported self-assembly systems only involve two or fewer metals. Herein, we first report a successful synthesis of self-assembled Ag@AuCu trimetal nanoplates in aqueous solution.

View Article and Find Full Text PDF

Au nanoingots, on which an Au nanosphere is accurately placed in an open Au shell, are synthesized through a controllable hydrothermal method. The prepared Au nanoingots exhibit an adjustable cavity structure, strong plasmon coupling, tunable magnetic plasmon resonance, and prominent photocatalytic and SERS performances. Au nanoingots exhibit two resonance peaks in the extinction spectrum, one (around 550 nm) is ascribed to electric dipole resonance coming from the central Au, and the other one (650-800 nm) is ascribed to the magnetic dipole resonance originating from the open Au shell.

View Article and Find Full Text PDF

Plasmon coupling induced intense light absorption and near-field enhancement have vast potential for high-efficiency photocatalytic applications. Herein, (Au/AgAu)@CdS core-shell hybrids with strong multi-interfacial plasmon coupling were prepared through a convenient strategy for efficient photocatalytic hydrogen generation. Bimetallic Au/AgAu cores with an adjustable number of nanogaps (from one to four) were primarily synthesized by well-controlled multi-cycle galvanic replacement and overgrowth processes.

View Article and Find Full Text PDF

Optical excitation, subsequent energy transfer, and emission are fundamental to many physical problems. Optical antennas are ideal candidates for manipulating these processes. We extend energy transfer to second- and third-harmonic (SH and TH) fields through the collaborative susceptibility χ ( = 1, 2, 3) resonances of nonlinear optical antennas.

View Article and Find Full Text PDF

The metal-semiconductor heterostructure is an important candidate for photocatalysis due to its efficient charge transport and separation. A controllable morphology and ideal interfaces are critically significant for improving the heterostructure photocatalytic performance. By controlling the concentration of Cd to control the reaction environment (pH value) and reaction rate, the CdSe nanocrystal is overgrown on the side or tip of the Au nanorods, which leads to a strong interaction between the excitons of CdSe nanocrystals and the plasmons of Au nanorods.

View Article and Find Full Text PDF

Strong couplings between molecular excitons and metal plasmons bring advantages to effectively manipulate the optical properties of hybrid systems, including both absorption and fluorescence. In contrast to absorption behaviours, which have been quite well understood and can be categorized into different regimes such as Fano dip and Rabi splitting, the characteristics of fluorescence in strongly coupled hybrids remain largely unexplored. Quenching instead of the enhancement of fluorescence is usually observed in the corresponding experiments, and a theoretical model to deal with this phenomenon is still lacking.

View Article and Find Full Text PDF

We synthesize Au@WS2 hybrid nanobelts and investigate their third-order nonlinear responses mediated by a strong anti-Stokes effect. By using the femtosecond Z-scan technique and tuning the excitation photon energy (Eexc), we find the sign reversals of both nonlinear absorption coefficient β and nonlinear refractive index γ to be around 1.60 eV, which is prominently higher than the bandgap (1.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the synthesis of Au and AuAg nanocups with unique geometries that enhance their optical properties, specifically focusing on their magnetic plasmon resonances and second-harmonic generation (SHG) capabilities.
  • The optimal conditions for achieving maximum SHG and magnetic field enhancement are identified, showing that a normalized depth of about 0.78-0.79 for Au nanocups yields the best results by leveraging magnetic plasmon resonance combined with a "lightning-rod effect."
  • The research also demonstrates that AuAg heteronanocups can combine magnetic and electric plasmon resonances, achieving a 21.8-fold increase in SHG intensity, providing new insights for
View Article and Find Full Text PDF

Bimetallic nanoparticles are widely used in chemical catalysis and energy conversion. Their practical performance can be better exploited through morphological control by adjusting the synthetic strategy. Herein, an aqueous phase route is used to achieve the controlled preparation of bimetallic Au/Pt and hollow Au/Pt/Au nanotriangles with tunable plasmonic properties and superior photocatalytic activity.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the creation of CdS/(Au-ReS) nanospheres that excel in photocatalytic hydrogen production due to their unique dielectric-plasmon hybrid antenna structure.
  • As the size of the ReS nanospheres increases, their performance improves significantly, achieving a hydrogen production rate of 3060 μmol g h when the ReS diameter reaches 218 ± 25 nm.
  • The results suggest that these hybrid antennas, made from combining 2D materials and metal nanoparticles, hold potential for various applications beyond just photocatalysis, including nonlinear optics.
View Article and Find Full Text PDF