Methionine (Met) can activate the mechanistic target of rapamycin (mTOR) to promote milk synthesis in mammary epithelial cells. However, it is largely unknown which G protein-coupled receptor can mediate the stimulation of Met on mTOR activation. In this study, we employed transcriptome sequencing to analyse which G protein-coupled receptors were associated with the role of Met and further used gene function study approaches to explore the role of G protein-coupled receptor 183 (GPR183) in Met stimulation on mTOR activation in HC11 cells.
View Article and Find Full Text PDFCullin5 (Cul5) protein can regulate multiple signaling pathways; however, it is still largely unknown the role and molecule mechanism of Cul5 in regulation of the mTOR signaling. In this study, we determined the effect of Cul5 on the proliferation of HC11 cells, a mouse mammary epithelial cell line, and explored the corresponding molecular mechanism. We found that Cul5 was highly expressed in mammary gland tissues in the lactation stage compared with that in puberty and involution.
View Article and Find Full Text PDF