Publications by authors named "Sihem Ouasti"

The cluster of differentiation 44 (CD44) and the hyaluronan-mediated motility receptor (RHAMM), also known as CD168, are perhaps the most studied receptors for hyaluronic acid (HA); among their various functions, both are known to play a role in the motility of a number of cell types. In peripheral nerve regeneration, the stimulation of glial cell motility has potential to lead to better therapeutic outcomes, thus this study aimed to ascertain the presence of these receptors in Schwann cells (rat adult aSCs and neonatal nSCs) and to confirm their influence on motility. We included also a Schwann-like phenotype (dAD-MSCs) derived from adipose-derived mesenchymal stem cells (uAD-MSCs), as a possible basis for an autologous cell therapy.

View Article and Find Full Text PDF

The natural turnover of free hyaluronic acid (HA) is predominantly based on its CD44-mediated internalisation in leukocytes. In a phagocytic cell model (RAW 264.7 murine macrophages) we here provide conclusive evidence that this receptor-mediated mechanism endocytosis is responsible also of the uptake of materials where HA is used as a coating agent, in this case chitosan/triphosphate nanoparticles on whose surface HA is electrostatically adsorbed.

View Article and Find Full Text PDF

We have studied the interplay between two endocytic receptors for a carrier structure bearing two complementary ligands. Hyaluronic acid (HA; three different molecular weights) was functionalized with an RGD-containing peptide; this ancillary ligand allows the macromolecule to bind to α(v) integrins in addition to the classical HA internalization receptor (CD44). The uptake of HA-RGD and of native HA was assessed in a phagocytic cell model (J774.

View Article and Find Full Text PDF

The study aimed to explore the influence of the network architecture on the mechanical properties and degradability of HA/PEG gels, and to highlight the relationship between Young's modulus and cell colonization with a selected architecture. Three different families of hyaluronic acid (HA)-based photopolymerized PEG diacrylate (PEGDA) hydrogels were compared, using different concentrations and molecular weights (64 and 234 kDa) of HA: semi-IPNs containing native HA in a PEG network (type I gels); co-networks obtained using thiolated HA as chain transfer agent during PEGDA polymerization (type II gels); co-networks obtained from the in situ preparation of a macromonomer derived from the Michael-type addition of thiolated HA on PEGDA (type III gels). From a comparative study of rheological properties and enzymatic degradability, type II gels were selected for a further study aiming to link their mechanical properties to cell spreading.

View Article and Find Full Text PDF

Surface-initiated atom transfer radical polymerization (SI-ATRP) can be used to produce conformal coatings of controlled thickness on virtually any surface, providing to it specific physico-chemical and biological properties. Here we have tackled the problem of modulating cell adhesion on typical culture substrates; tissue culture polystyrene (TCPS) offers a number of favorable properties (optical transparency, chemical stability, sterilizability, availability in a wide variety of shapes) but somehow limited biological function. A fine tuning of cell adhesion can, on the contrary, allow better control cell phenotype during cell expansion or, by using responsive polymers, allow attachment/detachment cycles with reduced cell damage.

View Article and Find Full Text PDF

The death receptor Fas/CD95 initiates apoptosis by engaging diverse cellular organelles including endosomes. The link between Fas signaling and membrane traffic has remained unclear, in part because it may differ in diverse cell types. After a systematic investigation of all known pathways of endocytosis, we have clarified that Fas activation opens clathrin-independent portals in mature T cells.

View Article and Find Full Text PDF